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Chapter 1

Introduction

Of the states of matter, solid, liquid, and gas, this thesis treats the behavior of
liquid with a little bit of gas, enclosed in solid material: a bubble in an inkjet
printhead.

Inkjet printing is the process where liquid material is deposited onto a sub-
strate by controlled ejection of liquid from a nozzle. Thus, inkjet printing is
a controlled, additive, and non-contact production process. For many appli-
cations, these characteristics make inkjet printing the unique enabling technol-
ogy. Examples are document printing, printed electronics, rapid prototyping 3D
printers, and printing DNA microarrays. All these applications are in princi-
ple possible with other technologies. However, the non-contact nature of inkjet
printing enables more substrate types, such as printing on textile, cardboard,
paper, food products, and glass, possibly even with the same machine. the
additive nature of inkjet printing make the process economically viable for dan-
gerous or expensive materials, such as OLED displays and the reagents in DNA
microarrays. The controlled nature of inkjet printing enables the use of ma-
terials that cannot be removed once applied. Full color 3D printers for rapid
prototyping are a good example, since this is only possible with inkjet printing.
Compared to toner printing, inkjet printing is a simpler procedure in principle.
Since inkjet printing is additive, there is no need to remove and recycle material
in an inkjet printer whereas a toner printer covers the entire substrate with
toner and then removes and recycles the toner that was deposited at the wrong
place. Inkjet printers are replacing toner printers or ’laser printers’, because the
process is much simpler. Inkjet printing is an increasingly important technol-
ogy in many parts of society, but this pervasion would be much faster and more
extensive if the problem of nozzle failure were overcome.

Nozzle failure is a temporary malfunction of a nozzle of a printhead. A
printhead is the part of an inkjet printer that generates the droplets of ink and
it usually comprises hundreds of nozzles. The failure of one nozzle therefore does
not render the machine completely inoperable, but it decreases the accuracy. For
some applications, such as document printing and rapid prototyping, this might
be acceptable, especially if the nozzle failure can be detected so that the printing
strategy can be modified to mask the detrimental effects. A DNA microarray
that fails to detect a form of cancer only due to nozzle failure, for instance, is
unacceptable. A piece of printed electronics where all electronic connections
are severed along a line running across the circuit is useless. An OLED display
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2 CHAPTER 1. INTRODUCTION

where one line of pixels is dead is rejected. For these applications, nozzle failure
must be overcome. Even for document printing, when the printer is set to a high-
quality presentation mode, nozzle failure might still be unacceptable. Extensive
nozzle failure is unacceptable in any mode of printing. Since nozzle failure
occurs more often at high printing speeds, nozzle failure must be overcome in
order to increase printing speed even for noncritical aplications. Therefore, the
cause of nozzle failure must be understood in order to improve productivity and
to enable new applications.

Nozzle failure is caused by entrained air bubbles. A droplet is produced by
generating a pressure drop over a nozzle. This pressure pushes out a quantity
of ink that will form a droplet outside of the printhead. In chapter 2, we show
that the volume oscillations of the bubble cause nozzle failure though their influ-
ence on the pressure drop over the nozzle. The volume oscillations of a bubble
in an infinite volume of liquid have been thoroughly investigated in the study
of sonoluminescence and they are accurately described by the Rayleigh-Plesset
equation. However, the volume of ambient liquid is not infinite in a printhead.
Therefore, we developed the theory that describes volume oscillations of bubbles
in finite volumes of liquid, and we applied this theory to the case of a bubble
in an inkjet printhead. This is described in chapter 3. This theory was tested
further in chapter 4 by using it to infer the bubble volume from the acoustic field
that the bubble generates. In chapter 5, we analyzed the different regimes of
bubble volume oscillations in a pipe by constructing a complete set of dimension-
less groups of parameters. We provide an interpretation of these dimensionless
groups as criteria for when the influence of finite size effects is important. These
predictions are verified with a numerical model. The predictions based on the
dimensionless groups were confirmed, showing that the volume oscillations of a
bubble in an inkjet printhead and the influence of bubble volume oscillations on
the pressure are now understood.

In chapter 6, we investigated how a bubble can be removed from an inkjet
printhead. Directly after entrainment, a bubble is too small to influence the
droplet formation. However, the bubble grows in the printhead. Eventually, its
influence on the pressure is so strong that droplet formation is disrupted. If
the bubble can be moved towards the nozzle and ejected before it can disrupt
droplet formation, nozzle failure is prevented. Therefore, we investigated how
a bubble moves in an inkjet printhead. In an inkjet printhead, the interaction
between the bubble and the walls gives rise to forces that are absent in an
infinite volume of liquid. We derived expressions for these forces and used these
and the expressions for the forces that were already known from the theory of
bubbles in infinite volumes of liquid to calculate the patterns of motion of a
bubble in a printhead. As the bubble volume increases, the patterns of motion
change. Initially, the pattern of motion is such that the bubble might be ejected.
Further investigation may yield a useful combination of nozzle shape, actuation
mode, and ink properties in which entrained bubbles are always ejected. Our
research provided a tool that aids in the search for this combination.

Another way to prevent nozzle failure is to prevent air entrainment by iden-
tifying and removing the causes. Air bubbles are entrained due to dust particles
that interfere with the droplet formation process. These dust particles are trans-
ported to the nozzle by flow of a thin layer of ink that coats the outside of the
printhead. Therefore, we studied this ink flow in order to prevent it or to modify
it so that dust no longer reaches the nozzles. In chapter 7, we identified the driv-
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ing force of these flows. We also derived a simplification to the equations that
govern these thin film Marangoni flows. These simplified equations were solved
analytically to make quantitative predictions of a fingering instability that was
observed in the ink layer. These predictions were compared with experimental
data to validate the analysis.

In the presented research, the theoretical and numerical predictions were ex-
tensively validated with experimental results. The experiments are described in
the following chapters, but they were mentioned only in passing in this chapter.
The difficulties in obtaining experimental data were considerable as a result
of the small length and time scales and the demanding specifications of the
investigated system. High-speed imaging, long-range microscopy at large mag-
nification, MEMS research tools, advanced electronic tools, and carefully set up
experiments were necessary to obtain the results that made validation of the
developed theory possible. The formulation of hypotheses was often driven by
surprising and fascinating experimental results. The experiments were neither
developed nor executed by the author of this thesis. They constitute the PhD
thesis researches of Jos de Jong, Arjan van der Bos, and Herman Wijshoff, the
work of Marc van de Berg, Hans Reinten, and the work of other researchers at
Oc e technologies B.V. Therefore, the advances in experimental methods that
were realized in this research and the results that were obtained by experiments
alone are not the focus of this thesis.
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Chapter 2

Entrapped air bubbles in
piezo-driven inkjet printing:
Their effect on the droplet
velocity 1

Air bubbles entrapped in the ink channel are a major problem in
piezo-driven inkjet printing. They grow by rectified diffusion and
eventually counteract the pressure buildup at the nozzle, leading to
a breakdown of the jetting process. Experimental results on the
droplet velocity udrop as a function of the equilibrium radius R0 of
the entrained bubble are presented. Surprisingly, udrop(R0) shows a
pronounced maximum around R0 = 17 µm before it sharply drops
to zero around R0 = 19 µm. A simple one-dimensional model is
introduced to describe this counterintuitive behavior which turns
out to be a resonance effect of the entrained bubble.

2.1 Introduction

The number of possible applications of drop-on-demand (DOD) printing has
increased considerably in the last few years. Beyond printing of text and pic-
tures, the technique will be or has already been applied in diagnostics, the
pharmaceutical industry, and the manufacturing of solar-cells and small and
cheap devices [1,2]. Stability of the inkjet printing process and its reproducibil-
ity is crucial for most of these applications. Moreover, a large jetting frequency
is desirable, in order to reduce the printing time.

Under normal conditions drop-on-demand piezo-electric inkjet printing [3–9]
fulfills all the requirements with respect to stability and reproducibility. How-
ever, under certain conditions an air bubble can be entrained in the nozzle

1Published as: Jos de Jong, Roger Jeurissen, Huub Borel, Marc van den Berg, Michel
Versluis, Herman Wijshoff, Andrea Prosperetti, Hans Reinten, Detlef Lohse, Entrapped air
bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity, Phys. Fluids 18,
121511 (2006).
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[10–12], in particular at large jetting frequencies beyond 20 kHz. This air
bubble grows by rectified diffusion [13–16]: While at pressure maxima air is
squeezed out of the bubble, this loss is overcompensated at the pressure minima
when the bubble expands, resulting in a net gas diffusion into the bubble. The
bubble growth first leads to a modification of the drop production process and
ultimately to the breakdown of the jetting. In ref. [12] we have introduced a
method to acoustically monitor the inkjet channel, using the piezo as a sensor.
In this way we could identify two different scenarios how bubbles are entrained
at the nozzle and what their long-time effect on the jetting is. However, a direct
optical observation of the entrained bubbles was not possible, as standard inkjet
channels are not optically accessible.

In this chapter we overcome this restriction by introducing a glass channel
and a glass nozzle plate, so that direct observation of the entrained bubble
and its radial and translational dynamics becomes possible. The aim of the
chapter is to correlate the bubble size (characterized by its equilibrium radius
R0 at standard static pressure) with the droplet velocity udrop. We will find
that surprisingly the droplet velocity first increases with increasing bubble size,
namely from about 1.5 m/s without any air entrainment to about 2.5 m/s for
an air bubble with R0 = 17 µm. Then it decreases sharply and at a bubble
radius of R0 = 19 µm the jetting breaks down.

The chapter is organized as follows: In section 2.2 we briefly introduce the
experimental setup. The main section is section 2.3 where we present the corre-
lation results between udrop and the bubble size R0. In section 2.4 we introduce
a simple one-dimensional model to qualitatively account for the observations.
The comparison with the experimental data is favorable (section 2.5). section
2.6 contains the conclusions and an outlook towards future work.

2.2 Experimental setup

The printheads under consideration in this chapter are side-shooter printheads
developed by Océ and used for professional printing. The schematic setup of the
printhead is depicted in figure 2.1 [12]. The channel block is a graphite block
with ink channels inside. The ink reservoir is connected to the channel and can
be set at a specified pressure. In the rectangular ink channel one of the four
walls is formed by a piezo element. Under the action of an applied voltage, the
piezo first contracts increasing the volume of the ink channel thereby reducing
the pressure and drawing in ink from the reservoir. During the second part of
the pulse, the piezo expands, reducing the volume of the channel and ejecting a
drop. The pressure waves generated by the piezo travel towards the ink reservoir,
where they are reflected out of phase, and to the nozzle, where they are reflected
in phase. The ink is pressed out through a 30 µm diameter electroformed nickel
nozzle.

The piezo is actuated with 6 µs trapezoidal pulses with a repetition rate
of 10 kHz, corresponding to one pulse every 100 µs, implying a 10 kHz firing
frequency of the droplets. More details of the driving protocol are given in
Ref. [12]. The transfer function of the piezo voltage, Vact, to the (maximum)
nozzle velocity un can be calculated from viscous acoustics in pipes, as described
e.g. by Tijdeman [17]. As shown in figure 2.2, in our printhead the dominant
frequency is f = 60 kHz.
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Figure 2.1: Sketch of the geometry of one ink channel of the printhead, which
typically contains 256 of such channels. Only one channel on the printhead is
actuated in our experiments. The pressure controlled reservoir supplies ink to
the rectangular ink channel of length of 7 mm, width of 200 µm, and height of
150 µm. The piezo-element of length of 5 mm is covered with a foil of 20 µm
thickness, which is in direct contact to the ink. The nickel nozzle plate has
round openings of diameter 30 µm, which serve as nozzles. The ejected droplets
have a diameter of typically 35 µm.

To optically monitor the entrapped air bubbles, the standard printhead just
described was modified. The nickel nozzle plate was replaced with (i) a glass
connection channel and, in addition, (ii) a glass nozzle plate glued to it; see
figure 2.3a for a sketch, figure 2.3b for a photograph and figure 2.3c for an
enlargement of the entrained bubble. (i) The glass connection channel built
by Micronit Microfluidics B.V. [19] is constructed from a glass plate with a
thickness of 400 µm. The channel was obtained by powder-blasting the glass
plate from both sides, leading to an hour-glass shape with a waist diameter of
approximately 80 µm and an inlet/outlet diameter of 250 µm. (ii) The glass
nozzle plate was cut from a 70 µm thick glass plate, which again was powder-
blasted from both sides. The result is a conical nozzle shape with a diameter of
about 50 µm at the channel exit and 30 µm at the nozzle end.

The nozzle plate and the connection channel are glued together to prevent
leakage. The plates are then positioned onto a standard printhead, replacing
the nickel nozzle plate. The glass is kept in place by small magnets, which
push it against the printhead. To permit visualization of the air bubbles, a
transparent ink was used. A continuous light source illuminates the glass from
the back. A Phantom V7 high speed camera records the ejected droplets and
the entrained air bubble at the same time. Due to the limited focal depth of
the optical system, small bubbles in the ink channel can be visualized without
optical distortions. For the chosen actuation voltage of 180 V , the droplet
velocity without entrapped bubbles is udrop = 1.05 m/s.

In order to start the experiment we cause the entrapment of an air bubble
as described in [12]. Under the action of the oscillating pressure in the channel,
the bubble grows by rectified diffusion [13–15] and causes the droplet formation
to stop. At this point the acoustic field is switched off and the bubble starts
dissolving. Shortly before the dissolution is complete, actuation is resumed and



8 CHAPTER 2. THE EFFECT OF BUBBLES ON DROPLET VELOCITY

0 2 4 6 8 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency /Hz

U
n/V

ac
t  /

m
s−

1 V
−

1

f = 60 kHz

Figure 2.2: The transfer function for the printhead under consideration showing
the dominant frequency at f = 60 kHz. un is the nozzle velocity and Vact
the applied actuation voltage. The transfer function is calculated according to
Tijdeman’s model [17], which from various measurements in other channels is
known to well represent the experimental one.

the high speed camera is triggered, recording the growth of the bubble and its
effect on the ejection of drops.

In figure 2.4 we show an example of the time evolution of a bubble obtained
in this way. We first let a bubble of initial size R0 = 26 µm dissolve; there is
no actuation. The dissolution rate is constant at about 0.5 pl/s, as seen from
figure 2.4b. At t = 165 s the actuation is switched on, leading to immediate
jetting through the nozzle. The bubble which had nearly completely dissolved
then starts to grow by rectified diffusion. Note the fast growth of the bubble
compared to its dissolution. Once it has reached an equilibrium radius of about
19 µm, jetting breaks down. This experiment shows the strong influence of the
size of the entrained bubble on the jetting. Note that if we had waited some tens
of seconds longer before switching on the actuation, the bubble nucleus would
have completely vanished, and the nozzle would have resumed jetting without
any problem – until the occurrence of the next bubble entrainment [12].

The recorded images of the ejected droplets and oscillating bubbles are an-
alyzed with a gray-level threshold to determine the location of the edges of the
droplets and bubbles. The images of both drops and bubbles only consist of
some tens of pixels, limiting the accuracy of the size determination for smaller
bubbles. Other sources of errors are optical diffraction and the assumed spheric-
ity of the droplets and bubbles in the digital image analysis. For the ejected
drops and for the bubbles within the channel (away from the walls) we do not
have any indication of deviations from sphericity. However, the bubbles pushed
against the glass nozzle plate seem to be slightly nonspherical.
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(a) (b)

(c)

Figure 2.3: (a) Sketch of (i) the glass connection channel with (ii) the glass
nozzle plate glued to it. (b) Photograph of half of the glass connection channel
and the glass nozzle plate under operation. An air bubble is present in the
connection channel close to the nozzle and droplets are ejected. The multi-
media part of this figure shows a high-speed movie (taken at 40,000 frames per
second) of the oscillating entrained bubble and the ejected droplets. (c) An
enlargement of the bubble in (b). Here the arrow points at the bubble, that is
pressed against the glass nozzle plate. The little dark dots left to the bubble
originate from dirt on the glass connection channel. (enhanced online)



10 CHAPTER 2. THE EFFECT OF BUBBLES ON DROPLET VELOCITY

0 50 100 150 200 250
5

10

15

20

25

30

t /s

R
0 /µ

m

je
tti

ng
no

 je
tti

ng

no actuation actuation

(a)

0 50 100 150 200 250
0

20

40

60

80

t /s

4/
3π

R
03   /

pl

no
 je

tti
ng

je
tti

ng

no actuation actuation

(b)

Figure 2.4: Equilibrium radius R0 (a) and corresponding bubble volume (b) as
function of time. Up to about t = 165 s there is no actuation and the bubble
dissolves. At t = 165 s the actuation is started and the bubble, which was
nearly fully dissolved, starts to grow by rectified diffusion. From the onset of
actuation up to the time that the bubble has reached about 19 µm the nozzle
is jetting. For larger bubbles the jetting breaks down.

During the experiments the jetting frequency is kept constant at 10 kHz.
The frame rate of the camera is four times as high, 40 kfps. Therefore, 4 frames
are acquired during one acoustic cycle, each at a different phase. To prevent
motion blur the exposure time was set to 3 µs.

2.3 Experimental results: bubble size and jet
velocity

In figure 2.5a the droplet velocity is displayed as a function of time. The ac-
tuation is started at t = 0 s. Up to t = 0.2 s, the droplet velocity increases,
reaching a maximum of 2.5 m/s. Then the droplet velocity gradually decreases
to udrop = 1 m/s at t = 0.9 s. A small amplitude oscillation of f = 50 Hz
is superimposed onto the droplet velocity, reflecting the AC frequency of the
devices. This effect is negligible compared to the effect of the entrained air
bubble.

When the radius of the air bubble is plotted in figure 2.5b, it is evident that
the air bubble grows over time by rectified diffusion. The scatter in the bubble
radius is found to be quite large, due to the low contrast in the images and
because multiple bubble radii are measured over one acoustic cycle. When we
compensate for the latter by plotting the average radius (over 40 bubble radii)
the bubble growth becomes more obvious as depicted in figure 2.5c. Combining
figures (a) and (c) results in the droplet velocity udrop as a function of the
bubble radius R0, figure 2.5d. This figure is the main experimental result of this
work. Surprisingly, udrop first increases with increasing bubble radius. Around
R0 ≈ 17 µm the droplet velocity has a pronounced maximum before dropping
sharply and jetting breaks down for bubble radii around 19 µm.

To estimate the error in the bubble radius arising from averaging over only
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Figure 2.5: (a) The time development of the droplet velocity. At t = 0 the
actuation is started with an air bubble in the ink channel, resulting in an initial
droplet velocity enhancement. (b) The radius of the entrapped air bubble over
time, showing large variation due to multiple frames during one acoustic cycle.
(c) The averaged bubble radius as a function of time. (d) Droplet velocity udrop
as a function of the equilibrium radius R0 of the entrapped air bubble. The
curve shows a pronounced maximum.
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four frames per cycle, we numerically model the bubble oscillations with the
Rayleigh-Plesset equation [13] and then apply the very same averaging proce-
dure as in the experiment. We find that in our parameter regime the error
introduced is small as compared to other error sources. The major error is
caused by the low contrast and hence the difficulties in edge detection. This
error is estimated to be ±4 µm (1 pixel). Note that this error is constant for
all bubbles, i.e., it is systematic and not statistical. Therefore, the shape of the
curve, and in particular the existence of the maximum, is not affected by it.

A quantitative explanation of the growth of the bubble as a function of
time (figure 2.5c) and the dynamics of the bubble’s position will be presented
elsewhere. In particular, we will account for the observed saturation in size as
a feedback effect: The grown bubble counteracts the pressure buildup in the
channel. Being larger than its resonance size, the bubble is pushed away from
the pressure antinode against the nozzle plate.

2.4 One dimensional disk bubble model

What is the origin of the maximum in udrop(R0)? It might be expected that the
main effect of the bubble in the inkjet nozzle would be to counteract the pressure
buildup in the nozzle, as the bubble gets compressed, thus making jetting more
difficult. The experimental results, however, show that the effect of the bubble
is more subtle, as for small entrained bubbles the droplet velocity increases.
To get further insight into the problem, we develop a simple one-dimensional
model. It will turn out that the droplet velocity increase is due to a resonance
phenomenon.

The nozzle flow and the bubble dynamics are both driven by the channel
acoustics. Note the feedback mechanism: The sound-driven bubble emits a
pressure wave that propagates into the channel, modifying the channel acoustics
and thus ultimately its own dynamics. A complete analysis of the system should
therefore comprise the coupling of the channel acoustics to the bubble and nozzle
dynamics. For the sake of simplicity, here we neglect the back-effect of the
bubble on the channel acoustics.

As shown already in figure 2.2, the channel transfer function has a strong
peak at f = 60 kHz. To simplify the analysis, in our one-dimensional model
we will consider only this dominant frequency and impose a sinusoidal velocity
in the channel. Extensions are easily possible, but not necessary to understand
the physics of the peak in udrop.

A sketch of the main ingredients of the model is shown in figure 2.6. The
channel has cross section Ac and the time-dependent velocity therein (averaged
over the cross section) is uc(t). The nozzle has an effective cross section An,
length ln, and the time-dependent (average) nozzle velocity is un(t). In between
channel and nozzle there is a disk-shaped compressible bubble, reflecting the
one-dimensional nature of the model. In spite of the fact that, in this simple
model, the bubble would actually block the channel, we allow an ink flow in the
direction of the nozzle. The relevant feature of the bubble is its compressibility.
This disk model is based on Og̃uz and Prosperetti’s work [18] who suggested
this simplification for large bubbles in tubes.

The viscous friction in the nozzle is approximated by the friction factor of
Poiseuille flow. From the Navier-Stokes equation, i.e., from balancing inertia,



2.4. ONE DIMENSIONAL DISK BUBBLE MODEL 13

Figure 2.6: Sketch of the one-dimensional disk bubble model. Note that in spite
of the (compressible) disk bubble we allow for an ink flow between channel and
nozzle.

viscous friction, and the pressure drop through the nozzle between the bubble
of pressure Pb and the ambient pressure P0, one obtains

dun
dt

=
1
ρln

(Pb − P0)− 8πν
An

un, (2.1)

where ν is the kinematic viscosity and ρ the liquid density, assumed to be
constant.

We now must connect the nozzle velocity un with the channel velocity uc.
In the absence of a bubble, continuity dictates that Anun = Acuc. With the
compressible bubble being present, one obtains

dVb
dt

= Anun −Acuc. (2.2)

The last ingredient is an assumed polytropic relation between the bubble volume
Vb(t) and its pressure Pb(t):

Pb(t) = P0

(
V0

Vb(t)

)γ
. (2.3)

Within the one-dimensional disk bubble model the bubble volume Vb can
be transformed into an effective thickness lb(t) = Vb(t)/Ac and the equilibrium
volume V0 to an equilibrium thickness l0 = V0/Ac.

Upon combining the last two equations we get

dPb
dt

= −P0γl
γ
0 l

(−γ−1)
b

(
An
Ac

un − uc
)

(2.4)

or, after linearization around the equilibrium volume (leading to lb = l0 in eq.
(2.4)),

dPb
dt

= −P0γ

l0

(
An
Ac

un − uc
)
. (2.5)
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Equations (2.5) and (2.1) form a set of two linear first order differential equations
for the bubble pressure Pb(t) and the nozzle velocity un(t). Upon eliminating
Pb we obtain a forced harmonic oscillator equation for the nozzle velocity un(t):

ün + 2βu̇n + ω2
0(R0)un = ω2

0(R0)
Ac
An

uc. (2.6)

The forcing is due to the channel velocity uc(t). The bubble-size dependent
eigenfrequency ω0 is given by

ω2
0(R0) =

γP0

ρlnl0

An
Ac

=
3γP0An
4πρlnR3

0

(2.7)

and the damping coefficient is

β =
4πν
An

. (2.8)

Both the normalized amplitude maxt(un(t, R0))/maxt(un(t, R0 = 0)) (see figure
2.7a) and the corresponding phase shift of roughly π (figure 2.7b) clearly show
the resonance behavior. Here we have used An = 1.3× 10−9 m2 for the nozzle
cross section, ν = 1.0× 10−5 m2s−1 for the kinematic viscosity, ln = 70 µm for
the nozzle length, ρ = 1090 kg/m3 for the ink density, f0 = ω/(2π) = 60 kHz
for the dominant frequency, and P0 = 101.3 kPa for the ambient pressure.
Though the Peclet number Pe = R2

0f/κ can approach 1 — for R0 = 10 µm,
f = 60 kHz, and the typical heat diffusivity of air κ = 15 × 10−6 m2/s one
obtains Pe = 0.4 —, for simplicity the bubble has been assumed to behave
isothermally throughout the cycle, γ = 1. Taking the adiabatic value γ = 7/5
only leads to a small shift of the maximum.

The location of the nozzle velocity maximum in figure 2.7a can straightfor-
wardly be calculated, leading to the resonance radius

Rres0 =
(

3γA3
nP0

4πρln (ω2A2
n + 64ν2π2)

) 1
3

. (2.9)

Using above values for the parameters, we obtain Rres0 ≈ 13 µm, in agreement
with figure 2.7a. The phase shift at resonance is not exactly π as a result of
viscous friction in the nozzle.

2.5 Comparison

To compare the results of the model with the data, the resulting droplet velocity
must be calculated from the nozzle velocity. This can be done with the method
described by Dijksman [3].

The droplet formation is assumed to start when the nozzle velocity becomes
positive, and to end when the kinetic energy density of the forming droplet
becomes larger than the average kinetic energy density of the fluid flowing out
of the nozzle. The ink that is outside the nozzle at that time is assumed to form
the droplet. The droplet leaves the nozzle with a kinetic energy equal to the
kinetic energy of the forming droplet at that time. The corrections for viscous
and capillary effects during the formation of the tail are neglected. A parabolic
flow profile is assumed.
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Figure 2.7: (a) Ratio of the maximal nozzle velocity maxt(un(t, R0)) for the
case with an entrained bubble to the maximal nozzle velocity maxt(un(t, R0 =
0)) versus the equilibrium bubble radius R0 within the one-dimensional disk
bubble model. In (b) the respective phase shift is displayed, clearly signaling
the resonance behavior.

For a sinusoidal driving velocity at a frequency of f = 60 kHz and the
geometry of the experimental setup, the droplet velocity monotonously depends
on the nozzle velocity amplitude, see figure 2.8. Therefore, a single peak in
the nozzle velocity causes a single peak in the droplet velocity. Physically, the
threshold observed in figure 2.8 of course reflects the finite amount of energy
being necessary to form the surface of a drop.

Using this droplet formation model, the droplet velocity can be calculated
as a function of the bubble radius, allowing for a direct comparison of the model
results with the experimental ones, see figure 2.9. The amplitude of the channel
flow was chosen to yield the experimentally determined droplet velocity in the
absence of a bubble.

The bubble radius causing a maximum of 2.5 m/s in the droplet velocity
was experimentally found to be R0 = 17 ± 4 µm. In contrast, the disk bubble
model gives a maximum in the droplet velocity at R0 = 13 µm (for a mean
nozzle radius of 20 µm), quantitatively slightly off, but in reasonable agreement,
considering the experimental systematic error of 4 µm in the estimate of the
bubble radius and the simplifications of the model. The estimated maximum
velocity is 5.3 m/s, about twice the measured value.

For a nozzle radius of 15 µm, the calculated maximum in the droplet velocity
shifts to R0 = 9 µm, which is outside the uncertainty interval, see the dotted
line in figure 2.9. However, the maximum droplet velocity of 3.0 m/s is closer
to the measured velocity maximum.

The results of the model are sensitive to the exact value taken for the nozzle
cross section. However, the shapes of the predicted and measured peaks are very
similar. Even the sharp drop in droplet velocity for bubble sizes slightly below
the size where droplet formation stops is represented in the one-dimensional
disk model where it is caused by the infinite slope of the droplet velocity as a
function of nozzle velocity.

Very small bubbles (R0 < 1 µm) do not influence the droplet velocity. How-
ever, such bubbles are too small to be optically detected.
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Figure 2.8: The droplet velocity calculated from the nozzle velocity according to
Dijksman [3] assuming a parabolic velocity profile. A nozzle velocity amplitude
of at least un = 2.0 m/s is required to form a droplet.

2.6 Conclusions and outlook

The influence of the bubble size on the droplet velocity in an inkjet printhead was
measured and modeled with a simple one-dimensional disk bubble model. As
expected, small bubbles have no effect on the droplet velocity. The main finding
of our work is that for intermediate bubble radii the droplet velocity is increased
by the bubble. This remarkable phenomenon is caused by a resonance in the
volume oscillations of the bubble, which are driven by the flow in the nozzle.
Large bubbles cause nozzle failure. The droplet formation ceases abruptly as
the bubble radius increases.

After these mechanisms have been understood, our research on the problem
will go in several directions. First of all, we will extend the one-dimensional
disk bubble model to a full, three-dimensional and two-way coupled numerical
model. We hope that with such a model the effect of the bubble size and of its
exact position on the droplet velocity can be quantitatively captured. Next, we
would like to quantitatively understand the bubble growth by rectified diffusion
and its dynamics in the ink channel. While rectified diffusion is quantitatively
understood in still liquid in the bulk, both the liquid flow along the bubble and
the constrained geometry in the nozzle strongly affect the bubble’s growth and
must be accounted for.

While we have revealed that small particles and an ink layer on the nozzle can
lead to air entrainment [12], it is not yet clear why at certain frequencies and for
certain shapes the nozzle is more vulnerable to air entrainment than at others.
A resonance mechanism between the driving frequency and the eigenfrequency
of the meniscus may be the origin for this observed strong dependence, and we
plan to examine this conjecture.
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Figure 2.9: The droplet velocity udrop as function of the equilibrium radius
R0. The experimental results (solid) show a maximum in droplet velocity at
R0 = 17 µm. The numerical model displays a maximum at R0 = 13 µm
(dashed) when the average nozzle radius 20 µm (An = 1.3 ·10−9 m2) is taken as
the relevant transversal length scale of the nozzle, and a maximum at R0 = 9 µm
(dotted) when the minimal nozzle radius of 15 µm (An = 7.1·10−10 m2) is taken
instead.

From an application point of view the ultimate goal must of course be to
avoid air entrainment or to immediately flush out the bubble once it has been
entrained.
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Chapter 3

The effect of an entrained
air bubble on the acoustics
of an ink channel 1

Piezo-driven inkjet systems are very sensitive to air entrapment.
The entrapped air bubbles grow by rectified diffusion in the ink
channel and finally result in nozzle failure. Experimental results
on the dynamics of fully grown air bubbles are presented. It is
found that the bubble counteracts the pressure buildup necessary
for the droplet formation. The channel acoustics and the air bubble
dynamics are modelled. For good agreement with the experimental
data it is crucial to include the confined geometry into the model:
The air bubble acts back on the acoustic field in the channel and thus
on its own dynamics. This two-way coupling limits further bubble
growth and thus determines the saturation size of the bubble.

3.1 Introduction

Drop-on-Demand inkjet printing [1] has been and will be applied to many in-
dustrial applications [2] which range from printing color filters for flat panel
displays [3] to DNA microarrays [4]. Still, the most common application is the
printing of text and graphics on paper. A small volume of ink is deposited on
the paper in a very controlled way. The stability of the printing process is cru-
cial, especially since the productivity and accuracy standards are continuously
raised. The principle of a piezo printhead is a piezo element which deforms an
ink channel, thereby building up pressure at the nozzle [5]. One of the biggest
challenges in piezo-acoustic printing is the entrapment of air bubbles [6–8]. They
disturb the pressure buildup at the nozzle and lead to nozzle failure. Therefore,
the monitoring of the printing process while printing is crucial.

Air entrapment at the nozzle can be detected by using the actuating piezo

1Published as: R. Jeurissen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, M.
Versluis, D. Lohse, Effect of an entrained air bubble on the acoustics of an ink channel, J.
Acoust. Soc. Am. 123, 2496-2505 (2008).
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as a sensor [8]. An entrapped bubble has to be removed as quickly as possible
to continue the printing process. However, waiting for the dissolution of the
bubble is very time consuming and decreases the productivity of the printhead.
Therefore, it is desirable to actively get rid of the air bubble. To accomplish this,
first the bubble dynamics have to be understood. This article focusses on the
dynamics of fully grown air bubbles where the jetting of droplets has completely
broken down. The entrapped air bubble oscillates in the acoustic field. During
bubble compression, gas is pressed out of the bubble, while during expansion
dissolved gas enters into the bubble. For a large enough driving pressure the
second effect dominates and a net growth of the air bubble results (rectified
diffusion, see refs. [9, 10]). Finally, the bubble reaches a dynamic equilibrium
size.

The presence of an equilibrium radius signals the saturation: The bubble has
become relatively large, thereby influencing the acoustic waves in the printhead,
hence limiting its own oscillations and growth. During actuation, the bubble
will then just remain in the ink channel oscillating around its equilibrium radius.
By employing a glass connection channel and high speed imaging, the air bubble
can be visualized and its dynamics can be resolved.

The dynamics of a bubble in a tube differ from the dynamics of a bubble in
an infinite volume of liquid [11,12]. Due to the finite size of the ambient liquid,
the natural frequency of oscillation usually decreases when the bubble becomes
larger with respect to the pipe [13,14]. Qin et al showed that in some cases, the
opposite occurs [15], indicating that the surrounding system and its behavior
are relevant for the dynamics of the bubble. When the bubble touches the walls
during expansion, the bubble can become non-spherical [16, 17]. Cui et al [18]
found that for a bubble between two parallel plates, the acoustic field generated
by the bubble is essential for the evolution of the bubble. For the saturated
bubbles in an inkjet printhead, we find the two-way coupling effect, i.e., the
backreaction of the bubble on the acoustic field, to be crucial, whereas for small
bubbles this effect can be neglected [19]. To model the two-way coupling, the
one dimensional disk bubble model of ref. [19] is extended to a fully coupled
model. Moreover, the bubble itself is now modelled with a linearized Rayleigh-
Plesset equation. We find that with such an extended model the experimental
data can be described very well. The two-way coupling effect is found to be
crucial. The pressure at the nozzle and the transfer function of the velocity in
the nozzle over the actuator voltage are changed significantly by the entrained
air bubble.

The article is organized as follows: First, in Section 3.2 the details of the
experimental setup are discussed. Next, in Section 3.3, the experimental air
bubble dynamics are presented. Section 3.4 is devoted to the bubble model. For
readability, some technical details of the model are separated in an appendix.
The comparison between the experiments and the model is given in Section 3.5.
The paper ends with the conclusions and an outlook, Section 3.6.

3.2 Experimental setup

The setup consists of a side-shooter printhead [19], developed by Océ Technolo-
gies. In this printhead, a 5 mm long rectangular ink channel is deformed by
a piezo element, thereby generating acoustic waves in the channel. The waves
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result in a pressure and velocity field near the nozzle. To visualize the dynamics
of the entrained air bubble, a glass connection channel was interposed between
the ink channel and a glass nozzle plate, similar to [19]. This channel has a
length of 400 µm and an hourglass shape. The waist diameter is 80 µm and
the maximum diameter 250 µm at the in- and outlet. On top of the connection
channel a glass nozzle plate is glued. The conical nozzles have a diameter of
30 µm at the exit and 50 µm at the inlet. The pulse applied to the printhead is
trapezoidal lasting 8 µs (2 µs rise time, 4 µs plateau, and 2 µs fall time), with
a repetition rate of 20 kHz.

After the bubble has been entrained, it is allowed to grow to its diffusive
equilibrium. The droplet formation process has now ceased completely. The
entrained air bubble is visualized by a Shimadzu HPV-1 high-speed camera
(maximum frame rate of 1 Mfps) and a bright Olympus light source. The
Shimadzu HPV-1 is capable of recording 100 frames and has an exposure time
as short as 250 ns. A single frame showing the entrapped air bubble in the
glass channel is depicted in figure 3.1. In this article we restrict ourselves to
fully developed bubbles, so that the bubbles start every acoustic cycle with the
same radius.

Figure 3.1: The entrapped air bubble is trapped in the glass connection channel.
While actuating, the fully grown air bubble will just remain oscillating in the
channel. Note the position of the air bubble: due to the Bjerknes forces it is
pushed against the glass walls. (The bubble is larger than its resonance size).
To the left and right of the channel with the bubble, the neighboring channels
can be seen.

3.3 Experimental results: bubble oscillations

For a driving voltage of 190 V , the radius of the bubble is plotted in figure
3.2a. The equilibrium value was found to be R0 = 23 µm, the minimum radius
was 15 µm and the maximum radius was 26 µm. Two successive acoustic
cycles (50 µs each) were captured by the camera with a frame rate of 1 Mfps.
Plotting these acoustic cycles modulo the period T = 1/f = 50 µs shows the
reproducibility of the oscillation, thereby confirming the assumption of a bubble
in dynamical equilibrium, figure 3.2b. The error in the data is caused by the
assumed sphericity of the air bubble and by the limited resolution of the images.
The error is estimated to be 2 µm in radius. Note that the expansion of the
bubble is smaller than the compression. As we will see in the next section,
this is due to the finite size of the ink channel. When reducing the actuating
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voltage to 120 V , we see a decrease in the saturation size of the air bubble, from
R0 = 23 µm to R0 = 18 µm, see figure 3.3. The minimum bubble radius is now
found to be 13 µm, and its maximum is 22 µm.

Note the position of the air bubble: it is pushed against the nozzle plate.
We attribute this to the flow field generated by the bubble oscillations. This
flow field pulls the bubble towards the walls. This effect is called the secondary
Bjerknes force [20]. Inspection of the obtained images reveals the bubble shape.
When walls are nearby, the bubble oscillates non-spherically. After a large
expansion, the shape of the bubble is nearly a quarter of a sphere that is bounded
by the nozzle plate and the channel wall. When the bubble is compressed, it
becomes nearly spherical. At lower actuation amplitudes, the bubble oscillations
are more spherical. This is expected to be caused by a decrease in secondary
Bjerknes Force. By reducing the actuation voltage, the amplitude of the acoustic
field is reduced, and so are the bubble oscillations. Therefore, when the bubble
oscillations are decreasing, so is the secondary Bjerknes force that pulls the
bubble towards the wall, resulting a less deformed bubble and a reduction of
the error introduced by the assumed sphericity of the bubble.
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Figure 3.2: a) The radius R(t) of the entrained bubble actuated with 190 V as
a function of time. The actuation frequency is 20 kHz. b) To show the repro-
ducibility of the bubble oscillations, the radius is plotted modulo its periodicity
T = 1/f = 50 µs. The different cycles are denoted by different symbols.(color
online)

The Fast Fourier Transform (FFT) is calculated to extract the frequencies
present in the oscillations of the bubble, and is depicted in figure 3.4. To obtain
a smooth spectrum, the bubble radius fluctuation ∆R(t) is padded with trailing
zeros before calculating the FFT. At both the driving voltage of 120 V where
R0 = 18 µm, and at a driving voltage of 190 V where R0 = 23 µm, the main
frequency of the bubble oscillations is found to be 60 kHz.
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Figure 3.3: The radius R(t) of the entrained bubble actuated with 120 V as a
function of time. The actuation frequency is 20 kHz. Two acoustic cycles are
displayed.(color online)

Figure 3.4: The FFT of ∆R(t) for a driving voltage of 190 V , where the satu-
rated ambient bubble radius is R0 = 23 µm (solid), and for 120 V , where the
saturated ambient bubble radius is R0 = 18 µm (dashed): The largest maxi-
mum remains nearly unchanged at 60 kHz, while the second largest maximum
at 40 kHz is larger at 190 V .(color online)
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3.4 Bubble model

3.4.1 Simplified geometry

To model the bubble oscillations in the ink channel, a one-dimensional model is
used. The cylindrical channel is divided into 4 sections, see figure 3.5. Section
1 is the actuation channel, where the piezo is located. Section 2 is the standard
connection channel. Section 3 is a model of the glass connection channel which
we have included for visualization and section 4 is the nozzle. The interface
between the sections is positioned at respectively, x1, x2, and x3. The channel
acoustics, bubble dynamics, and nozzle flow are modelled. The bubble is located
in the connection channel, and similar to the experiments it experiences the
pressure at x3 between the glass connection channel and the nozzle. The effect
of the bubble on the channel acoustics is included in this model.

Figure 3.5: A schematic overview of the ink channel. It is divided into four
sections. Section 1 is the channel where the piezo is located. Section 2 is the
standard connection channel. Section 3 is a representation of the glass connec-
tion channel, and section 4 is the nozzle. The interfaces between the sections
are positioned at respectively, x1, x2, and x3. The (undisturbed) diameters dj
for the four sections j = 1, 2, 3, 4 are d1 = 195 µm, d2 = 250 µm, d3 = 80 µm,
and d4 = 30 µm, respectively.

The channel acoustics is first treated section by section. Then the channel
sections are coupled through the matching of interface conditions. The channel
deformations are only represented by the cross sectional variations.

3.4.2 Channel acoustics

The channel is actively deformed when applying a voltage to section 1, and
passively by the pressure inside the channel. The channel cross sectional area
Aj(x, t) of section j can be written as

Aj(x, t) = A0,j + aa,j(t) + ap,j(x, t). (3.1)

Here x is the spatial coordinate in the channel direction, A0,j is the undisturbed,
equilibrium, cross sectional area, aa,j(t) is the variation of cross sectional area
due to the actuator voltage Vj (obviously being nonzero only for section 1), and
ap,j(x, t) is the passive deformation of the channel in response to the pressure,
Pj(x, t), inside the channel. Note that aa,j(t) is constant over a channel section.
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j section αj βj dj ceff,j lj
/V −1 /m2N−1 /µm /ms−1 /µm

1 actuation channel −3.43 · 10−6 8.36 · 10−10 195 803 5000
2 connection channel 0 0 250 1250 1000
3 glass connection 0 0 80 1250 149
4 nozzle 0 0 30 1250 42

Table 3.1: Parameters of the channel sections.

For frequencies below the Nyquist frequency fn = 500 kHz of the measurements,
the wavelength λ > 2.5 mm is much larger than the channel radius dj < 250 µm,
so the radial component of the pressure gradient and velocity become negligible
with respect to the axial components. Linearize the channel deformations:

aa,j(t) = αjVj(t)A0,j

ap,j(x, t) = βjPj(x, t)A0,j (3.2)

with:

αj =
1
A

(
∂A

∂V

)
P

βj =
1
A

(
∂A

∂P

)
V

(3.3)

αj , βj , A0,j and Vj(t), for j = 1, 2, 3, 4, are assumed to be constant over a
channel section. αj and βj are calculated with a plane-strain calculation in
the commercial solid mechanics model ANSYS by Océ Technologies B.V. Each
channel section is characterized by the magnitude of these quantities, and the
length lj of the channel section. In table 3.1 we have summarized the parameters
characterizing the sections.

The wave equation for a deforming channel can be derived from the Navier-
Stokes equation by a control volume analysis in the low reduced frequency ap-
proximation [21] where Rc � λ. Insert the linearized channel deformations,
equation (3.2), into the wave equation for a deforming channel:

∂2
t Pj = c2eff,j∂

2
xPj − αjρc2eff,j∂2

t Vj − c2eff,j
µ

A0,j
∂x

∮
∂Aj

∂nuds (3.4)

where u is the axial velocity field, µ = 0.01 Nm−2s is the viscosity, ρ =
1090 kgm−3 is the density of the ink, and ceff,j the effective phase velocity,
which is given by:

ceff,j =

√
c2

1 + βjc2ρ
(3.5)

where c = 1250 ms−1 is the velocity of sound in the ink. Equation (3.4) is linear,
and can be solved in the frequency domain, so that in each channel section the
pressure is given by:

Pj(x, t) = p1,j e
i(ωt−k1,jx) + p2,j e

i(ωt−k2,jx) − αjc2eff,jρvj (3.6)
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where p1,j and p2,j are the amplitudes of the waves propagating in the negative
and positive x-direction, respectively. The driving voltage is Vj = vje

iωt, where
vj is the amplitude and ω is the angular frequency. Note again that only section
1 experiences direct driving, v1 6= 0, whereas sections 2, 3, and 4 have vj = 0.
The angular frequency ω ranges from −2π ·107 rads−1 to 2π ·107 rads−1. It is
not to be confused with the drop-on-demand driving frequency fDoD = 5 kHz,
which is chosen such that the acoustic field is completely damped at the end of
the acoustic cycle. k1,j and k2,j are the wave numbers of the waves propagating
in the negative and positive x direction, respectively. Inserting the velocity
profile of a cylindrical pipe given by Womersley [23] and dropping the eiωt term
leads to:

kn,j = (−1)n
ω

ceff,j

1 +
2
√
iJ1

(
Woji

3
2

)
WojJ0

(
Woji

3
2

)
−

1
2

(n ∈ {1, 2}) (3.7)

where Woj = 1
2dj
√

ωρ
µ is the Womersley number. The functions J0 and

J1 are the ordinary Bessel functions of the first kind, of zeroth and first order,
respectively. With (3.7) substituted into (3.6) one finally obtains a general ex-
pression for the pressure Pj(x, t) in section j.

The glass connection channel (j = 3) and the nozzle (j = 4) are not cylindri-
cal but have a more complicated shape. However, both sections can be modelled
by an equivalent cylindrical section, as shown in Appendix A. For the glass con-
nection channel an equivalent diameter of d3 = 80 µm and an equivalent length
of l3 = 148 µm are found. The conical nozzle is described by a cylinder of equiv-
alent diameter d4 = 30 µm and equivalent length of l4 = 42 µm. Over most of
their length, the radii of the real nozzle and glass connection channel are larger
then the radii of the equivalent cylindrical sections. The equivalent lengths are
chosen to keep the acoustic admittance constant. Since the acoustic admittance
is proportional to the ratio of the cross sectional area over the length of the
cylinder, see equation 3.26, the real lengths are also larger then the equivalent
lengths.

The flow rate through the cylindrical nozzle is a function of the pressure drop
over the nozzle in the frequency domain. The expression given by Womersley [23]
for the amplitude of the volume flow rate qj in a cylinder (the nozzle) is

qj = pj
πdj

2i

4ljωρ

1−
2J1

(
Woji

3
2

)
i
3
2 WojJ0

(
Woji

3
2

)
 (3.8)

3.4.3 Matching the channel sections

We now have to match the pressure fields Pj(x, t) for the different sections j.
The boundary conditions at the ends of each section are continuity of pressure
and flow. The pressure should be continuous at the matching positions x1, x2,
x3 (figure 3.5),

Pj(xj) = Pj+1(xj), (3.9)
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j = 1, 2, 3.
Moreover, continuity requires that the volume flow rate should also be contin-
uous:

Ajuj(xj) = Aj+1uj+1(xj) (3.10)

for j = 1, 2. Here uj(x) is the velocity averaged over the cross section, Aj(xj).
The effect of the bubble is included in the volume flow rate balance between
section 3 and 4 where the bubble sits by explicitly considering the flux Qb into
the bubble,

A3u3(x3) = A4u4(x3) +Qb (3.11)

These boundary conditions together with equations (3.6) and (3.7) (the equation
for the propagation of acoustic waves) provide a complete description of the
channel acoustics.

3.4.4 Bubble volume oscillations

The behavior of spherical bubbles in large volumes is described by the Rayleigh-
Plesset equation (see e.g. Brennen [20])

RR̈+
3
2
Ṙ2 =

1
ρ

[(
P0 +

2σ
R0
− Pv

)(
R0

R

)3γ

+ Pv −
2σ
R
− 4µṘ

R
− P∞(t)

]
(3.12)

Here R(t) is the bubble radius. ρ = 1090 kgm−3 is the ink density, σ is the
surface tension, σ = 0.028 Nm−1, R0 is the bubble radius at ambient pressure
P0 = 101325 Nm−2, Pv = 2400 Nm−2 is the vapor pressure, µ = 0.01 Nm−2s
is the viscosity, and γ is the polytropic index. The bubble is assumed to oscillate
isothermally, i.e. γ = 1. P (t) is the pressure fluctuation caused by the actuator
so that far from the bubble the pressure is

P∞(t) = P3(x3) = P0 + P (t) + ∆P (t). (3.13)

Here ∆P (t) is the pressure disturbance caused by the bubble. This term can be
neglected for bubbles in an infinite volume of liquid. In a channel however, this
term is significant. It reflects the coupling between the channel acoustics and
the bubble volume oscillations. The pressure P∞(t) is the pressure at locations
so far from the bubble, that the pressure due to the inertia of the radial flow
field is negligible with respect to the imposed pressure fluctuations.

For small fluctuations of the driving pressure P (t)� P0 and bubble radius
∆R(t) � R0 the RP equation (5.32) can be linearized. The response of the
bubble can be transformed to the frequency domain,

R(t) =
∞∑

k=−∞

r(ωk)eiωkt, (3.14)

where r(ω) is the amplitude of the radius at frequency ω. Similarly:

P∞(t) = P3(x3) =
∞∑

k=−∞

p3(ωk)eiωkt, (3.15)
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where p3(ω) is the amplitude of the pressure at frequency ω at the position x3.
In the notation we suppress the explicit dependance on ωk for compactness of
formulation. Upon linearization, the Rayleigh-Plesset equation (5.32) becomes:

−ω2r =
1
R0ρ

(
−r
(
P0 +

2σ
R0
− Pv

)(
3γ
R0

)
+ r

2σ
R2

0

− 4µiωr
R0

− p3

)
. (3.16)

The volume change of the bubble and thus the ink flow towards the position of
the bubble center is:

Qb(t) = − d

dt

(
4
3
πR(t)3

)
=

∞∑
k=−∞

qb(ωk)eiωkt (3.17)

where qb(w) is the amplitude of the volume flow rate into bubble at frequency
ω. Combining equations 3.16 and 3.17 yields an expression for the amplitude of
the volume flow rate.

qb = −4πip3R
2
0ω

(
R0ρω

2 −
(
P0 +

2σ
R0
− Pv

)(
3γ
R0

)
+

2σ
R2

0

− 4µiω
R0

)−1

.

(3.18)
When inertia, vapor pressure, viscosity, and surface tension are neglected, equa-
tion (3.18) reduces to the expression for the disk bubble in De Jong et al. [19].
This shows that the dynamics obtained for the disk bubble in ref. [19] can be
alternatively derived from the Rayleigh-Plesset equation.

3.4.5 Model Results

The model described in this section was developed to test the hypothesis that
the two-way coupling between the bubble dynamics and channel acoustics is
essential. The modification of the pressure fluctuation at the entrance of the
nozzle by the bubble is significant, as shown in figure 3.6 for a bubble of R0 =
23 µm, driven at 80 V .

The pressure fluctuations are reduced by a factor of 4 when a bubble is
present. It is this pressure reduction which causes the nozzle to stop jetting
droplets. Not only the pressure amplitude is reduced, also the higher frequencies
in the signal are damped. This becomes evident when looking at the transfer
function of the actuator voltage to the velocity in the nozzle, as shown in figure
3.7.

The velocity in the nozzle is reduced and the resonance peaks at 50 kHz and
110 kHz are shifted to 20 kHz and 60 kHz, respectively. Moreover, the higher
frequencies are completely damped by the air bubble. The zeros in the transfer
function are not shifted since they are caused by the properties of section 1.
The zeros occur at frequencies f = n

ceff,1
l1

, where n is an integer.
The change in pressure fluctuation that the bubble experiences is accom-

panied by a change in bubble radius oscillation, as shown in figure 3.8. Here
the bubble radius is shown, calculated with the described model, and calculated
when neglecting the two-way coupling. Through the channel acoustics, the bub-
ble loses energy, thus reducing the amplitude of the volume oscillations. When
this effect is neglected, the bubble is driven beyond the linear regime, and the
linearization is not justified. The bubble oscillations without two-way coupling
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Figure 3.6: Pressure at the entrance of the nozzle P3(x3) with (solid), and
without (dashed) an entrained bubble of R0 = 23 µm, as calculated by the
model for a 2 − 4 − 2 pulse (2 µs rise time, 4 µs plateau, and 2 µs fall time),
applied at 80 V . The pressure peak that starts at 10 µs would normally cause
the formation of a droplet. With an entrained air bubble, this peak is reduced
by a factor of four. The pressure reduction due to the bubble is strong enough
to prevent the droplet formation.(color online)

were thus calculated with the full (nonlinear) Rayleigh-Plesset equation, equa-
tion 3.12, driven by the pressure that would occur in the absence of a bubble,
see figure 3.6. As seen from figure 3.8, the effect of the two-way coupling is
significant, and cannot be neglected.

The FFT is calculated from the oscillations of the R0 = 23 µm bubble and
displayed in figure 3.9. The main frequency is 60 kHz. The same frequency
is also found for the bubble of R0 = 18 µm. This frequency does not depend
on the bubble radius once it has reached a certain size. The reason for this is
that once the bubble is large enough, it fully reflects the acoustic waves, acting
like an open end of section 3 of the channel and decoupling it from the nozzle
(section 4).

Air bubbles can be detected by monitoring the electric current through the
piezo in the time domain, as it reacts to pressure fluctuations. This detection
method has been described by de Jong et al. [8]. The proposed model predicts
the changes in this signal due to the entrained air bubble, as shown in figure
3.10, for the system considered by de Jong et al [8]. This printhead has an
8 mm actuation channel and a 50 µm trumpet shaped nozzle. A 5− 6− 3 (5 µs
rise time, 6 µs plateau, and 3 µs fall time) trapezoidal pulse is employed, at a
voltage of 44 V . The bubble is placed at the nozzle entrance, and has a radius
of R0 = 23 µm.

In the first part the piezo is deformed by the pulse. After t = 15 µs, the
piezo reacts to the pressure fluctuations in the ink channel. Since our interest is
focused on the acoustical signal from the piezo, the scale on the vertical axis is
chosen such that the pressure change in the ink channel and its modification due
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Figure 3.7: Transfer function amplitude of velocity in the nozzle over actuator
voltage, with (solid) and without (dashed) an entrained bubble with a radius
R0 = 23 µm. Note the large reduction of the velocity, in particular at higher
frequencies. The individual peaks are shifted as a result of the modification
of the reflection at the nozzle. The bubble has a significant influence on the
channel acoustics.(color online)

to the bubble are resolved. The air bubble causes the signal to have a higher
amplitude, a faster oscillation, and less high frequency fluctuation.
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Figure 3.8: The bubble radius, neglecting the two-way coupling between bubble
volume fluctuation and pressure (dashed), and with this two-way coupling taken
into account (solid). The case with two-way coupling is calculated with the
linearized analysis as described in the text for a trapezoidal 2-4-2 pulse and a
driving of 80 V . The case where two-way coupling is neglected is calculated
with the nonlinear Rayleigh-Plesset equation because in this case the bubble is
driven beyond the linear regime. This is most evident in the violent collapse
near t = 10 µs, where the bubble is compressed within 3 µs from 48 µm to
10 µm.(color online)

Figure 3.9: The FFT calculated from the bubble oscillations for the case of
figure 3.8 with two-way coupling. The main frequency is f = 60 kHz. For this
bubble radius, R0 = 23 µm, the bubble reflects the acoustic waves in the ink
channel. Therefore, the closed end (the nozzle) is replaced by an open end (the
bubble). (color online)
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Figure 3.10: Piezo current with (solid) and without (dashed) an entrained air
bubble of 23 µm radius. The printhead has an 8 mm actuation channel, a 50 µm
trumpet shaped nozzle and is driven at 44 V with a 5 − 6 − 3 (5 µs rise time,
6 µs plateau, and 3 µs fall time) trapezoidal pulse. The signal is divided into
two parts: first (0 < t < 15 µs), the piezo is deformed by a 44 V voltage, in
the second part (15 < t < 100 µs), the piezo is only deformed by the pressure
changes in the ink channel. Without a bubble, the piezo current is small after
t = 50 µs. The bubble however reflects the acoustic waves travelling towards
the nozzle. Since most damping is caused by the nozzle, the acoustic waves
remain in the ink channel for a relatively long time. (color online)
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3.5 Comparison between model and experiment

To compare the experimental data with the bubble model, the experimentally
obtained equilibrium radius of the bubble is used in the model. A quantitative
comparison can be seen in figure 3.11 for the 120 V and the 190 V driving. As
mentioned before, only the amplitude of the acoustic pressure for a driving of
190 V is adjusted to the pressure in the experiments so that for a bubble of
R0 = 23 µm the amplitude of the bubble oscillations fits to the experiment:
The driving of 190 V in the experiments is found to be a driving of 80 V in the
model. The difference in driving is assumed to be caused by the properties of
the piezo, in particular the value of α1. upon adjusting this absolute size, a good
agreement of the shape of the signal can be seen, showing the importance of the
confined geometry in our printhead channel. In particular, the relatively small
expansion of the bubble compared to its large compression is well captured.
After about t = 30 µs, the model slightly deviates from the experimental data.
This is assumed to be due to the absence of thermal damping in the model,
which is known to be relevant for bubbles of this size [20], in particular in closed
systems [24].
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Figure 3.11: Comparison of the experimental bubble oscillations (crosses) with
the numerical model (solid line). The air bubble of R0 = 23 µm (left) and
R0 = 18 µm (right) is driven at 190 V (left) and at 120 V (right). The model
driven at 80 V (left) and 51 V (right) captures the details of the initial expansion
and the compression of the bubble. After t = 30 µs, the model deviates from
the bubble oscillations. (color online)

The frequency spectrum (Fast Fourier Transform) is compared in figure 3.12.
The bubble radius is R0 = 23 µm in the experiments and in the model. The
main frequency component found in the experiments is 60 kHz, as in the model.

3.6 Conclusions and outlook

When an air bubble is entrapped in the ink channel, it grows by rectified diffu-
sion up to some saturation size. The oscillations of this bubble of saturated size
are measured and modelled. Due to the confined space the bubble acts back
on the acoustic waves. It is this two-way coupling between the bubble and the
channel acoustics results in the equilibrium size of the bubble. By employing a
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Figure 3.12: The Fast Fourier Transform (FFT) of the bubble oscillations in the
experiments (dashed) and for the model (solid), for a bubble size of R = 23 µm
radius. The main frequency component at f = 60 kHz agrees reasonably well.
(color online)

glass window the oscillations are measured with high speed imaging. The chan-
nel acoustics and bubble dynamics are modelled with a one-dimensional model.
This model incorporates coupling between the bubble and the ink channel. The
bubble itself is modelled with a linearized Rayleigh-Plesset equation. It turns
out that the confined geometry and therefore the two-way coupling is crucial.
The result is a simple model that can be employed to study air bubble behavior
and predict the effect of an entrapped air bubble on the acoustic field in the
channel. In this way, air bubbles can be studied for different channel properties,
A0,j , lj , αj , βj and acoustic driving protocols.



3.6. CONCLUSIONS AND OUTLOOK 37

Appendix A.1: Nozzle representation

Conical nozzle representation

This appendix deals with the representation of the conical nozzle used in the
experiments through the cylindrical nozzle that is employed in the model. A
sketch of experimental nozzle and its cylindrical representation is shown in figure
3.13.

Figure 3.13: Left, the experimental nozzle, Rl = 25 µm, Rr = 15 µm, and
ln = 70 µm. Right, the cylindrical nozzle representation employed in the model,
R4 = 15 µm, and l4 = 42 µm.

Two nozzle properties are important: the viscous friction on the walls, and
the acoustic properties. The experimental nozzle can be described as a cylinder
with an equivalent diameter and length. The equivalent diameter of the model
nozzle, d4 = 2R4, is chosen equal to the minimum experimental nozzle diameter
30 µm in order to match the viscous friction in the nozzle. Now the correct
equivalent length, l4, has to be determined based on the acoustic properties.

The volume flow rate of ink through the nozzle, Qn, is defined as∫
An

un dA = Qn =
∞∑

k=−∞

qn(ωk)eiωkt, (3.19)

where qn is the amplitude of the volume flow rate through the nozzle.
The pressure can be obtained by integrating the linearized momentum equa-

tion over the axial coordinate

∂tuj =
−1
ρ
∂xPj ⇒ Pn(x) = Pn(x3) +

∫ x

x3

iρω
qn

An(x)
dx. (3.20)

Transforming Pn to the frequency domain gives

Pn =
∞∑

k=−∞

pn(ωk)eiωkt. (3.21)

After solving for the admittance (the volume flow divided by the pressure see
e.g. [25, 26]) and imposing zero pressure at the meniscus one gets

qn
pn

=
−1

iρω
∫ ln

0
1

An(x) dx
(3.22)
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Equation (3.22) is a general solution depending on the geometry of the nozzle.
This equation will now be evaluated for different nozzles and the glass connec-
tion channel.

The nozzle radius of the experimental conical nozzle is described by

Rn(x) = Rl

(
1− x

l4

)
+Rr

x

ln
(3.23)

Rl is the entrance radius (25 µm), and Rr is the exit nozzle radius (15 µm).
The length of the experimental nozzle is ln = 70 µm. Inserting eq. (3.23) into
eq. (3.22) results in:

qn
pn

=
−π

iρω
∫ ln

0
1

(Rl(1− x
ln

)+Rr
x

ln
)2 dx

=
−πR2

l

iρωln
∫ 1

0
1(

1+
(

Rr
Rl
−1
)
x
)2 dx

(3.24)

By evaluating the integral, the admittance of the experimental conical nozzle
is obtained as

qn
pn

=
−πRlRr
iρωln

(3.25)

For the cylindrical nozzle of section 4, the admittance is

q4

pn
=
−π(R4)2

iρωl4
. (3.26)

If we now match the admittance of the experimental nozzle and the modelled
cylinder, we can calculate the equivalent length l4 of the nozzle based on the
minimum radius, 1/2d4 = R4 = Rr = 15 µm.

q4

pn
=
−π(R4)2

iρωl4
=
−πRlRr
iρωln

(3.27)

The equivalent length for the cylindrical nozzle is found to be:

l4 =
R4

2

RlRr
ln = 42 µm. (3.28)

Trumpet shaped nozzle representation

The nozzle considered for the calculation of the electric current through the piezo
in figure 3.10 is a trumpet shaped nickel nozzle. A sketch of the experimental
nozzle and the nickel nozzle is depicted in figure 3.14.

We describe the radius of the trumpet-shape nozzle of figure 3.14 by

Rn(x) = Rl − ln

√
1−

(
1− x

ln

)2

(3.29)

The trumpet shaped nozzle is specified by two parameters: the nozzle length
ln = 50 µm and the ratio λ = Rl

ln
where Rl = 65 µm is the entrance radius.

The smallest radius is Rn(ln) = Rr = Rl − ln = 1/2d4 = 15 µm, and this is the
radius at the meniscus. The radius is plotted as a function of x in figure 3.15.
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Figure 3.14: Left, the experimental nozzle, Rl = 65 µm, Rr = 15 µm, and
ln = 50 µm. Right, the cylindrical nozzle representation employed in the model,
R4 = 15 µm, and l4 = 26 µm.

Insert this nozzle shape into equation (3.22) to obtain the admittance of the
trumpet shaped nozzle:

qn
pn

=
−πln
iρω

2
(
−1 + λ2

) 3
2

π + 2 arctan
(

1√
−1+λ2

)
+ 2
√
−1 + λ2

(3.30)

This admittance is equal to the admittance of a cylindrical nozzle whose radius
is equal to Rr and whose length is:

l4 = ln
(λ− 1)2

F (λ)
(3.31)

with F (λ) equal to the second fraction on the right-hand side of equation (3.30).
Therefore, the equivalent cylinder has a diameter of d4 = 30 µm and a length

of l4 = 26 µm.

Appendix A.2: Glass connection channel repre-
sentation

The method used to obtain equivalent cylindrical nozzles is also applied to the
glass connection channel. The shape of the connection channel is approximately:

Rc(x) = Rmax − (Rmax −Rmin)
(

sin
πx

lg

)2

(3.32)

where lg is the length of the glass connection channel, Rmax is the maximum
channel radius, and Rmin is the minimum channel radius. The approximated
shape of Equation (3.32) is plotted in figure 3.16.
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Figure 3.15: The approximation of the experimental nozzle radius. (color online)

Insert the channel cross-sectional area based on this radius into equation
(3.22) to obtain:

qg
pg

=
−πR2

max

iωρlg

2 (1− κ)
3
2

2− κ
(3.33)

where pg is the amplitude of the pressure drop over the glass connection channel,
qg is amplitude of the volume flow rate through the glass connection channel,
and

κ =
Rmax −Rmin

Rmax
=

125 · 10−6 − 40 · 10−6

125 · 10−6
= 0.68 (3.34)

The equivalent cylindrical connection channel with diameter d3 = 80 µm
has a length of l3 = 149 µm. The admittance of the glass connection channel
and the conical nozzle can be compared to obtain an estimate of the relative
influence of the connection channel. The conical nozzle is approximated by a
cylindrical nozzle of d4 = 15 µm, and equivalent length of l4 = 42 µm. The
maximum glass channel radius is Rmax = 125 µm and the channel length is
lg = 400 µm. The pressure drop ratio is pg

pn
= 0.5. The pressure drop over

the connection channel is significant, with respect to the pressure drop over the
nozzle.
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Figure 3.16: The approximation of the hour glass shape of figure 3.1. (color
online)
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Chapter 4

Acoustic measurement of
bubble size in an inkjet
printhead 1

The volume of a bubble in a piezo inkjet printhead is measured
acoustically. The method is based on a numerical model of the inves-
tigated system. The piezo not only drives the system, but it is also
used as a sensor by measuring the current it generates. The numer-
ical model is used to predict this current for a given bubble volume.
The inverse problem is to infer the bubble volume from an exper-
imentally obtained piezo current. By solving this inverse problem,
the size and position of the bubble can thus be measured acousti-
cally. The method is experimentally validated with an inkjet print-
head that is augmented with a glass connection channel, through
which the bubble was observed optically, while at the same time the
piezo current was measured. The results from the acoustical mea-
surement method correspond closely to the results from the optical
measurement.

4.1 Introduction

The dynamics of a sound driven free bubble in infinite volume is well described
by the Rayleigh-Plesset equation [1–3], whose validity even under the extreme
conditions of single bubble sonoluminescence has been thoroughly established
[4]. However, many important cases of bubble dynamics occur under constraint
conditions, in finite volumes of liquid, rather than infinite volumes, such as
in confined spaces and near a wall [5–8]. Examples include the behavior of
gas bubbles in blood vessels, aiming at improving ultrasound diagnostics and
treatment [9], or thermal inkjet printing and other microfluidic applications,
where bubbles are used as actuators [10,11]. However, bubbles can also disrupt

1Published as: Roger Jeurissen, Arjan van der Bos, Hans Reinten, Marc van den Berg,
Herman Wijshoff, Jos de Jong, Michel Versluis, Detlef Lohse, Acoustic measurement of bubble
size in an inkjet printhead, J. Acoust. Soc. Am. (in press).
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the operation of the printhead as was shown in earlier research [12–14]. Although
inkjet printing is a robust process and billions of droplets can be printed without
problems, there is a small chance that during actuation a small air bubble is
entrapped at the nozzle of an ink channel. The bubble influences the channel
acoustics, reducing the pressure buildup at the nozzle. The bubble grows by
rectified diffusion until it reaches a diffusive equilibrium [12–14]. At this size,
the pressure buildup at the nozzle is insufficient for droplet production, so that
the nozzle fails. This malfunctioning can be detected acoustically [13], but until
now the relation between bubble size and channel acoustics has not been shown
quantitatively. In fact in many studies the bubble was assumed to behave as if
it were in an unbounded liquid [15,16].

The dynamics of a bubble in confined space is fundamentally different from
that in an infinite volume of liquid where the far field is three dimensional. In
contrast, in a compressible inviscid liquid, the far field of a bubble between two
parallel infinite walls is two dimensional [17], and the far field of a bubble in an
infinitely long pipe is one dimensional [18–20]. An incompressible liquid does
not allow bubble volume fluctuations in either confined space, while the volume
fluctuations in an unbounded volume of liquid are possible and governed by the
Rayleigh-Plesset equation. Models that assume an unbounded volume of liquid
are therefore inappropriate for a bubble in a confined space.

In this study, a model is used that captures the effect that a bubble has
on the channel acoustics and vice versa. To validate the model, experimental
results are presented which correlate the acoustic change inside the channel with
optical measurements of an entrained air bubble.

4.2 Geometry of the inkjet printhead

The inkjet printhead that is used in this research is developed by Océ Tech-
nologies B.V. This experimental printhead consist of 256 similar ink channels
where each channel has a rectangular shape and a length of 10 mm. A 8 mm
long piezo element is placed onto the channel. This piezo generates the acoustic
waves by applying a trapezoidal pulse of 13 µs (4 µs rise time, 5 µs plateau,
4 µs fall time) [21]. The generated waves travel through the channel and are
reflected at the ink reservoir at one side, and at the nozzle at the other side.
The result is a velocity and pressure build up at the nozzle which leads to a
droplet being ejected [22, 23]. Typically, droplets of 30 pl are generated at a
rate of 20 kHz with a velocity of 6 m/s.

To visualize the dynamics of the entrained air bubble, a 400 µm long glass
connection channel [24] was interposed between the ink channel and the nozzle
plate (figure 4.1), similarly as done in reference [13]. This channel was made
by powder blasting which resulted in an hourglass shape with a waist diameter
of 220 µm and a maximum diameter of 300 µm at the ends. In figure 4.2 the
connection channel with an air bubble inside is shown. On top of the connection
channel, a 100 µm thick nickel nozzle plate is glued. The trumpet shaped nozzles
have a diameter of 30 µm at the exit and 130 µm at the inlet.
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Figure 4.1: The channel inside the printhead is about 10 mm long and is actu-
ated by a 8 mm long piezo. In between the channel block and the nozzle plate
a 400 µm long glass connection channel is placed through which the bubble
dynamics can be observed.

4.3 Experimental parameters

Besides visualizing the bubble dynamics, also the pressure variations inside the
channel were measured. This was done by measuring the piezo current. This
technique [25] has earlier been applied in [13]. Even small pressure fluctuations
in the channel result in measurable current from the piezo. As this signal is only
measured in between the actuation pulses, the time window where the current
can be measured is 30 µs at a droplet production rate of 20 kHz. An example
of this piezo current is shown in figure 4.3. This figure illustrates that the
acoustic signal changes significantly when the channel acoustics are disturbed
by air entrapment.

In this study, the piezo current was measured at a range of bubble volumes.
To accomplish this, air entrapment was induced by physically blocking a chan-
nel while actuating. The actuation was continued until the entrapped bubble
reached its diffusive equilibrium size, which is about 120 pl. Then, the actuation
was stopped allowing the bubble to dissolve. The bubble dissolves at a rate of
approximately 0.5 pl/s, so it takes about 4 minutes for a 120 pl bubble to fully
dissolve. During the dissolution of the bubble, piezo current data were gathered
by actuating at a frequency of 1 Hz. At this reduced actuation rate, rectified
diffusion is not strong enough to sustain the bubble, so it dissolves. One mi-
crosecond before every actuation pulse, an image of the bubble was captured.
In this way, motion blur due to volume oscillations was prevented.

4.4 Modeling the printhead

Deformation of a piezo gives rise to a deformation current I from the actua-
tor. Such a deformation can be caused by varying the voltage over the elec-
trodes. Thanks to this effect, the piezo can be used as an actuator. Another
way in which the piezo can be deformed is caused by acoustic waves in the
channel. Therefore the piezo element can be used also as a sensor. The piezo
current is calculated by using the model developed in reference [14], which links
the Rayleigh-Plesset equation to the equations that govern the propagation of
acoustic waves in a viscous medium in a flexible pipe and the response of the
piezo and channel to the actuator voltage.
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Figure 4.2: An optical measurement showing an entrapped air bubble in the
glass connection channel. While actuating, the fully grown air bubble will just
remain oscillating in the channel indefinitely. Note the position of the air bubble:
due to the secondary Bjerknes force it is pushed against the glass wall where it
stays fixed even after the actuation is stopped. On the left and right sides of
the channel the neighboring channels can also be seen.

Acoustically, the print head consists of four linked sections of pipes as shown
in figure 4.4. The properties of the channel are constant over each section.
The relevant properties are the piezo electric expansion coefficient αj , the wall
flexibility βj , the cross sectional area Aj , the velocity of sound in the liquid c,
the liquid density ρ, the viscosity µ, and the length Lj of the channel section.
The piezo electric expansion coefficient is defined as

α ≡ 1
A

(
∂A

∂U

)
P

, (4.1)

where U is the voltage over the electrodes of the piezo element and P is the
pressure in the channel. The wall flexibility is defined as

β ≡ 1
A

(
∂A

∂P

)
U

. (4.2)

These quantities can be determined with a solid mechanics calculation, provided
that the geometry and material parameters are accurately known. They can also
be determined by measuring the piezo current in the absence of a bubble.

The analysis is performed in the frequency domain. The discrete Fourier
transform is defined through

f(t) =
∑
j

F (ωj)eiωjt, (4.3)

where f(t) is the relevant quantity in the time domain, and F (ω) is the same
quantity in the frequency domain. The explicit dependence on frequency not
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Figure 4.3: Piezo current of a normal operating nozzle (solid), and with an
entrained air bubble with a volume of Vb = 80 pl (dashed) close to the nozzle
plate. It can be seen in this figure that the volume oscillations of the entrapped
bubble modify the piezo current significantly; the piezo current amplitude is less
damped and the main frequency decreases.

spelled out for the remainder of the paper for the sake of brevity. The pressure
P is decomposed into the waves propagating to the left Pl and right Pr. For
each channel section, the amplitudes of the left and right propagating waves are
calculated per frequency,

P =
∑
j

Pre
i(ωjt−kx) + Ple

i(ωjt+kx) + Ps. (4.4)

The pressure Ps due to the actuator depends only on the imposed actuator
voltage. The wave number k is a complex quantity due to viscous dissipation.
For a cylindrical pipe, a closed form expression can be obtained analytically [26],
namely

k =
ω

ceff

√√√√√ 1

1 +
2
√
iJ1

(
Wo i

3
2
)

Wo J0

(
Wo i

3
2
)
. (4.5)

The functions J0 and J1 are the ordinary Bessel functions of the first kind, of
zeroth and first order, respectively. The Womersley number Wo is the ratio of
the inertia of the oscillating velocity field over the viscosity,

Woj =
1
2
dj

√
ωρ

µ
, (4.6)
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Figure 4.4: The print head as it is implemented in the model. From left to right:
actuator channel, connection channel, glass connection channel and nozzle.

where dj is the diameter of the section. The effective wave velocity is the inviscid
phase velocity of acoustic waves. This quantity differs from the velocity of sound
due to wall flexibility. It was derived by Young [27] and is given by

ceff =

√
c2

1 + βc2ρ
. (4.7)

The effective wave velocity is equal to the velocity of sound c, if the wall flexibil-
ity β vanishes, and smaller for nonzero wall flexibility. The wave number (4.5)
has been the main result of the acoustical model [26]. The boundary conditions
are continuity of pressure and volume flow rate. Equation (4.4) for the pressure,
equation (4.5) for the wave number, and the boundary conditions describe the
propagation of acoustic waves in a flexible channel filled with a viscous liquid.

Electrically, the piezo actuator is a capacitor in parallel with a variable
current source. The piezo current depends on the capacitance of the actuator
Ca, the coupling coefficient α, and the pressure in the channel. The coupling
coefficient relates the voltage over the piezo to the deformation of the channel
and has also been used in the calculation of the channel acoustics. The time
derivative of the charge expresses the relation between the actuator voltage and
the piezo current I,

I =
dQ
dt

=
(
∂Q

∂U

)
P

dU
dt

+
(
∂Q

∂P

)
U

dP
dt
. (4.8)

Here Q is the total charge on the piezo actuator and U the voltage over the piezo
actuator. To calculate or interpret the piezo current, the isobaric capacitance
and the relation between the channel pressure and current have to be deter-
mined. The isobaric capacitance is measured directly. The piezo current due to
pressure fluctuations can be calculated from the thermodynamic fundamental
equation of the actuator channel. The differential of the energy per unit length
of channel is given by,

de = P dA+ U dq, (4.9)

where q is the charge per unit length and e is the energy of the channel per unit
length. Note that only the structure is considered in this section.
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The analysis is simplified when the Legendre transform [28] with respect to
pressure and actuator voltage is used, because the mechanical properties of the
channel are known in terms of the pressure and actuator voltage as independent
parameters. The differential of the Legendre transform g (Gibbs the free energy
per unit length) is

dg = de− d(AP )− d(Uq) = −AdP − q dU. (4.10)

The isobaric capacitance is defined as the second derivative,

CP ≡
(
∂Q

∂U

)
P

= La

(
∂q

∂U

)
P

= −La
(
∂2g

∂U2

)
P

, (4.11)

where La is the actuator channel length and q is assumed to be constant. The
coupling coefficient

(
∂Q
∂P

)
U

is(
∂Q

∂P

)
U

= −La
(
∂

∂P

)
U

(
∂g

∂U

)
P

= −La
(
∂

∂U

)
P

(
∂g

∂P

)
U

= La

(
∂A

∂U

)
P

.

(4.12)
Combining equations (4.1) and (4.12) yields the coupling coefficient

αALa =
(
∂Q

∂P

)
U

. (4.13)

Combining equations (4.8), (4.11), and (4.13) yields the piezo current

I = Cp
dU
dt

+ αALa
dP
dt
. (4.14)

In general, the pressure is a function of position. When the fluctuations are
sufficiently slow for the system to come to rest locally, the piezo current can be
obtained by integrating over the length of the actuator,

I = Cp
dU
dt

+ αA

∫ La

0

dP
dt

dx. (4.15)

This approximation is valid here, since the wavelength is much larger than the
channel radius, ensuring that the system is in local equilibrium. The piezo
current is now known in terms of the actuator voltage and the channel pressure.

From the Fourier transform of the pressure, the Fourier transform of the
piezo current If can be calculated. Inserting the expression of the pressure into
equation (4.15), applying the Fourier transform defined in equation (4.3), and
dividing by eiωt yields an expression for the piezo current,

If = iωCpU + αAj
ω

kj

(
−Pr,je−ikLa + Pl,je

ikjLa
)

+ αjAjLaiωPs. (4.16)

If the electric signal source were an ideal voltage source, the voltage over the
actuator would now be prescribed and the electrical resistance would vanish.
The piezo current would be determined and measured as an indication of the
acoustics in the channel. In reality however, the signal generator is not an ideal
voltage source but has an output impedance Rp. Therefore the voltage over the
piezo actuator is not imposed, but is obtained as a part of the solution. The
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Figure 4.5: The simplified measurement circuit: The switch changes between 1,
actuation and 2, when the piezo is used as hydrophone. The output impedance,
Rp, is in reality distributed throughout the system. It consists of resistance
at connections, in wires, in the amperemeter, and in the voltage source. The
jet pulse Ua differs from the voltage U over the piezo electrodes due to this
resistance. In reality, the voltage source consists of a number of linked devices:
an arbitrary waveform generator, a switchboard, and amplifiers.

symbols that refer to electric properties of the measurement system are clarified
in figure 4.5. The piezo voltage is the sum of the actuation pulse Ua and the
voltage over the output impedance of the signal generator and the connections,

U = Ua − IfRp. (4.17)

When equation (4.17) is inserted into equation (4.16), an expression for the
piezo current with a nonideal voltage source is obtained,

If = iωCp(Ua − IfRp) + αAj
ω

kj

(
−Pr,je−ikjLa + Pl,je

ikjLa
)

+ αAjLaiωPs.

(4.18)
Upon rearranging, the piezo current for a finite output resistance is obtained as

If =
1

1 + iωCpRp

(
iωCpU + . . .

+ αjAj
ω

kj

(
−Pr,je−ikjLa + Pl,je

ikjLa
)

+ αjAjLaiωPs

)
. (4.19)

This expression shows that a finite output resistance acts as a low-pass filter
with a cutoff frequency of ωc = 1

CpRp
. Since the order of magnitude of the

output impedance is typically Rp = 100 Ω and the capacitance of the piezo
actuator is about 1 nF , the cutoff frequency is typically ωc = 10 MHz, which
is much larger than any relevant frequencies. Therefore, the output impedance
can be neglected.

The coupling coefficient αj and the wall flexibility βj can be determined
by comparison of the measured and calculated piezo current. Modifying the
coupling coefficient changes the magnitude of the measured signal, but not its
shape. So when the correct value of αj is used in the model, the amplitudes of the
measured and calculated piezo currents are equal. The wall flexibility changes
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the resonance frequencies of the channel. Thus, when the correct value of βj
is used, the frequencies that are present in the calculated piezo current match
those in the measured signal. These conditions were used to determine both
parameters. Now that these parameters have been determined, the current from
a printhead with a bubble can be modeled and compared with the experiment
(see figure 4.6).
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Figure 4.6: The measured (solid line) and calculated piezo currents (dashed
line). Both amplitude and frequency match which indicates that both the wall
flexibility and the piezo electric coupling coefficient are chosen correctly.

4.5 Comparing the model with experiments

In order to compare the model with the experiment, it is convenient to single out
the change in the piezo current due to the bubble. Therefore, the piezo current
of the undisturbed nozzle I0 is subtracted from the piezo current obtained when
a bubble is entrapped I(Vb). This gives the differential piezo current

Ĩ(Vb) = I(Vb)− I0. (4.20)

We will distinguish between the experimental differential current Ĩe, with a
corresponding optical measured bubble volume Ve, and the differential current
resulting from the model Ĩm(Vm), where Vm is the volume of the bubble assumed
in the calculation. The undisturbed piezo current is obtained experimentally by
measuring the piezo current in the absence of an entrained bubble. With the
model, the undisturbed current can be obtained by setting the bubble volume to
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zero. Figure 4.7 shows examples of experimentally obtained differential currents
Ĩe. This figure illustrates again the pronounced change in the piezo current when
an air bubble is present, compared to the current of an undisturbed channel.
Moreover, it shows that even for very small bubbles, the change in the piezo
current is still significant.
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Figure 4.7: Experimentally obtained differential piezo currents Ĩe = Ie − I0.
The solid line shows the signal of an undisturbed channel, the dotted line shows
the signal when a bubble of 5 pl is entrapped and the dashed line shows the
signal when a bubble of 81 pl is entrapped. The signal from the undisturbed
channel shows the magnitude of noise in the measurements. Obviously, in the
absence of noise, the differential piezo current of the undisturbed channel would
have vanished throughout.

The difference between the measured and calculated piezo current can be
expressed as δi(Vm), the relative norm of the difference, defined as

δi(Vm) =
‖Ĩe − Ĩm(Vm)‖

‖Ĩe‖
. (4.21)

Here the L2 norm is used, which is defined as

‖f(t)‖2 ≡

√
1
T

∫ T

0

|f(t)|2 dt. (4.22)

The norm of the difference is nondimensionalized using the norm of the measured
differential current. When a bubble is entrapped, the value of δi(Vm) depends
on the bubble volume Vm that is assumed in the calculation. The value of



4.5. COMPARING THE MODEL WITH EXPERIMENTS 55

δi(Vm) is close to zero when the differential current of the model matches the
differential current of the experiment. Note that δi(Vm) is a positive definite
function of the bubble volume that is assumed in the calculation. Therefore,
when δi(Vm) reaches a minimum, the match between model and experiment
should be optimal. The value Vm for which this minimum is reached should
then correspond to the measured bubble volume. In figure 4.8, the relative
norm of the difference is shown for 8 measured piezo currents as a function of
the assumed bubble volume. The functions are smooth and well behaved, which
facilitates the search for their minimum. In the domain used in the calculation
only a single minimum is found for δi(Vm). To illustrate the agreement between
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Figure 4.8: Norm of the difference between the measured and calculated distur-
bances. This function of the bubble volume has a distinct minimum where the
agreement between the model and the experiment is the highest. The graphs
where no bubble is present rise sharply from a value of δi(Vm) = 1 at zero bub-
ble volume. The optically found bubble volumes are shown on the right of the
curves; it agrees with the position of the minimum, revealing the success of the
employed model.

the model and experiment at this minimum, figure 4.9 shows the differential
piezo current of a measurement with its modeled counterpart. In this example,
the optically obtained bubble volume was 81 pl. By inserting the corresponding
piezo current into the model the minimum in δi(Vm) was found for a bubble of
86 pl. As can be seen in figure 4.9, the calculated piezo current closely resembles
the measured piezo current in both frequency and amplitude.
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Figure 4.9: The calculated differential piezo current Ĩm(Vm) (dashed) is com-
pared with the experimentally obtained differential piezo current Ĩe(Ve) (solid).
For these currents the model finds a bubble volume of 86 pl, which is close to
the value of 81 pl that was measured optically.

The quality of the model becomes even more convincing in figure 4.10, where
Ve, gathered during the bubble dissolution process, is compared with Vm calcu-
lated by the model. For both methods, the absolute error is given by the colored
area. The absolute error in the optically obtained bubble volume increases with
the bubble volume. This originates from the measurement method, where the
radius is extracted from the images with an accuracy of a few pixels. The abso-
lute error is about 0.9 µm, independent of the bubble size itself. As the bubble
volume is Ve = 4

3πr
3
e , where re is the bubble radius, the relative error in the

bubble volume is three times the relative error in the radius; ∆Ve

|Ve| = 3∆re

|re| . Cor-
respondingly, the absolute error ∆Ve = (4πr2

e)∆re, is quadratic in the bubble
radius. Note that the error in the optical bubble volume does not affect the
error in the calculated result, as Ve is not a parameter of δi(Vm), but only the
current Ie which was measured simultaneously with Ve.

The error in the acoustic measurement ∆Vm is calculated from the minimum
value in figure 4.8 by using

∆Vm =

∥∥∥Ĩe − Ĩm(Vm)
∥∥∥

2

∂
∂Vm

∥∥∥Ĩm(Vm)
∥∥∥

1
.

(4.23)

Here the difference between the calculated piezo current and the measured piezo
current is assumed to be Gaussian white noise. The derivative is evaluated by
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a finite difference approximation.
In the inset of figure 4.10, the ratio of the acoustically measured bubble

volume over the optically measured bubble volume is shown. This illustrates
that for bubbles above 20 pl, the relative error is less than 12 percent. For
small bubble the relative error diverges, and the acoustic measurement method
becomes less accurate. This is attributed to nonlinear volume oscillations of the
air bubble, which this linearized model cannot capture.
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Figure 4.10: Acoustically measured bubble volume (Vm) is shown as a dotted
line and the optically measured bubble volume (Ve) is shown as a solid line. The
areas around the lines give the error margins in the results. In the inset, the
ratio of the optically measured bubble volume over the acoustically measured
bubble volume is shown. This illustrates that the relative error diverges for
small bubbles. For larger bubbles, the relative error is less then 12 percent.

4.6 Summary & Outlook

A linear model is used to estimate the volume of a bubble in an inkjet channel.
With this model it is shown how a bubble influences the channel acoustics of an
inkjet printhead. The linear approximation in this model is valid for bubbles
that are larger than 20 pl. Small bubbles exhibit nonlinear behavior, which
the model cannot capture. Therefore, the acoustic measurement method is less
accurate in this regime. To overcome this problem, the method can be extended
by solving the full nonlinear equations. The two-way coupling with the channel
acoustics turns the Rayleigh-Plesset equation into a delay differential equation.
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This nonlinear equation can be solved numerically [29] at the cost of increased
calculation time.

The model calculates the current through the actuator. By comparing the
current with experimentally obtained currents, the model is able to accurately
determine the bubble volume. In this way, an acoustic measurement method
for the volume of entrapped air bubbles is obtained. This method was validated
with optically measured bubble volumes. In addition, this shows that the linear
regime of volume oscillations of an air bubble in an inkjet microchannel and the
corresponding channel acoustics is well understood.
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Chapter 5

Regimes of bubble volume
oscillations

Productivity of an inkjet printer is limited by the effect on the acous-
tics of air bubbles that are entrained into ink channels. When a
bubble is entrained, it is very small. However, due to the volume
oscillations of the bubble, gas diffuses towards the bubble so that
the bubble grows. Eventually, the printing process is disrupted.
As a step towards solving this problem, bubble volume oscillations
are studied in the complex situation of an inkjet printhead, which
is basically a bubble in a long pipe with a nozzle. In this paper,
a complete set of dimensionless groups for all the parameters that
specify a bubble in a pipe is derived and interpreted. The regimes
of bubble volume oscillations are predicted theoretically with these
dimensionless groups. A numerical model is developed to test these
predictions. For this model, the Rayleigh-Plesset equation is ex-
tended to include the influence of the bubble volume oscillations on
the acoustic field and vice versa. This modified Rayleigh-Plesset
equation is coupled to a channel acoustics calculation and a Navier-
Stokes solver for the flow in the nozzle. The theoretical predictions
are confirmed by the results from the numerical simulations.

5.1 Introduction

The dynamics of volume oscillations of a bubble in a pipe are important in
the application of bubbles as ultrasound contrast agents in blood vessels to
diagnose and treat cardiovascular diseases [1–3]. To investigate the behavior of
these ultrasound contrast bubbles and their coating, some researchers place the
bubble inside a capillary to keep it in place [4,5]. In microfluidic applications, a
bubble in a capillary can be used as an actuator [6]. Another application where
the behavior of a bubble in a pipe is relevant is in inkjet printing. Entrained
air bubbles in the ink channel of an inkjet print head are harmful to the jetting
process [7]. These applications are fairly recent, and the available literature
on this problem is still scarce. However, the investigations of the individual
components, pipe acoustics and bubble dynamics, are venerable subjects of
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62 CHAPTER 5. REGIMES OF BUBBLE VOLUME OSCILLATIONS

research.
The study of pipe acoustics started more than two centuries ago. In the

early nineteenth century, Young derived the influence of wall flexibility on the
propagation velocity of pressure disturbances in a flexible pipe. In the latter
half of the nineteenth century, just 20 years after the introduction of viscosity to
account for internal friction in deforming liquids, Korteweg derived the influence
of viscosity on the propagation of acoustic waves in a rigid pipe. Both derivations
were limited to wavelengths that are much larger than the pipe radius. A
general analysis of the propagation of acoustic waves in a rigid pipe, where the
influence of thermal damping and viscosity are taken into account, was derived
by Kirchhoff in the form of a transcendental equation. Kirchhoff also provided
an approximate solution to this equation for large wave numbers. Womersley
[8] applied these equations to the flow of blood in arteries in animals. He
showed that the dimensionless group that indicates the magnitude of inertia
over viscosity is constant for many different mammals, even though the radii are
very different. This dimensionless group is now called the Womersley number,
although it was already known by Korteweg 70 years earlier. An overview of the
different approximate solutions to Kirchhoff’s solution is given by Tijdeman [22].
Tijdeman showed that the entire problem is governed by three dimensionless
groups, one dimensionless group for the magnitude of thermal effects, the shear
wave number or Womersley number for the magnitude of viscosity, and the
reduced frequency for the allowed modes of propagation of acoustic disturbances.

The study of bubble dynamics started over a century ago with the study
by Lord Rayleigh of what later turned out to be cavitation damage on ship
propellers. Many researchers after Lord Rayleigh have extended this work, cul-
minating in what is now known as the Rayleigh-Plesset equation. This equation
is discussed extensively in textbooks [9,10]. The Rayleigh-Plesset equation cou-
ples the gas pressure inside a bubble to the radial flow field that results from
volume oscillations of that bubble. In this flow field, inertia, viscous friction,
and surface tension lead to a difference in pressure between the interior of the
bubble and the pressure far away from the bubble. These effects are taken into
account in the Rayleigh-Plesset equation.

The study of the interaction between pipe acoustics and volume oscillations
of a bubble in a finite volume of liquid is very recent. The case of a bubble near
a flat wall has been studied earlier [11]. See also [12] for a more recent study.
The method of images can be employed to obtain the volume oscillations for a
bubble near a flat infinite wall. The spherically symmetric case of a bubble in
a spherical liquid-filled flask was studied by Nigmatulin et al. [13]. The effect
of reverberation in a rectangular tank was studied both experimentally and
analytically by Leighton et al. [14]. They note that the method of images yields
a solution that grows in time. By taking into account damping of the acoustic
waves in the tank, they were able to obtain a physically relevant solution. Oguz
and Prosperetti were the first to analytically study the behavior of an air bubble
in a pipe [15]. Their model is a potential flow calculation of a bubble on the
axis of a finite pipe. They determined the natural frequency of oscillation and
the thermal damping. This model was validated experimentally by Sassaroli
and Hynynen [16]. Cui et al determined the natural frequency of oscillation of
a bubble between two parallel plates [17] by a similar analysis. The nucleation
and growth of a large vapor bubble in a pipe were determined by Ory et al [18],
by solving the full Navier-Stokes equation numerically. The bubble volume
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oscillations in an inkjet printhead were predicted theoretically and validated
experimentally by Jeurissen et al [20]. They showed that in the complicated
geometry of an ink jet printhead, with the coupling to the induced acoustics, the
small-amplitude volume oscillations could be predicted by a modified Rayleigh-
Plesset equation. We now extend this method to large amplitude oscillations,
and provide the criteria that indicate the regimes where this approach is valid
and necessary.

5.2 Dimensionless groups

For the case of a bubble in a pipe, criteria for comparison of acoustic effects
with effects of bubble volume oscillations, have not yet been established. These
relations are quantified in this section by identifying the corresponding dimen-
sionless groups. Dimensionless groups that compare acoustic effects with each
other, and dimensionless groups that compare effects in bubble volume oscilla-
tions with each other have been described at length in the literature. They are
included in the list of dimensionless groups for completeness.

A systematic procedure for obtaining a complete set of dimensionless groups
is suggested by Buckingham’s Pi theorem. The smallest number of dimension-
less groups that contain all independent parameters is equal to the number of
dimensional parameters minus the number of different base units in those pa-
rameters. To compile a complete list of the parameters that specify the flow,
all effects are considered individually.

In pipe acoustics, compressibility is relevant. It introduces the velocity of
sound c as a relevant parameter. Unsteady inertia introduces the density of
the liquid ρl, the angular frequency ω, and the sound pressure Pa, although the
pressure amplitude drops out since channel acoustics per se is linear. The length
L and the radius Rc of the pipe further determine how the sound can propagate.
Viscous friction introduces the dynamic viscosity µl. Thermal conduction in-
troduces the thermal conductivity of the liquid κl and the isobaric specific heat
capacity CP,l of the liquid. The wall flexibility introduces the relaxation time
of the wall τ and the wall compliance β, defined as

β =
1
Ac

(
∂Ac
∂P

)
(5.1)

where Ac = πR2
c is the cross-sectional area of the pipe. In the case of a capillary

tube embedded in a liquid, wall relaxation arises due to acoustic radiation losses
into the ambient environment. From these parameters, the kinematic viscosity
νl and the thermal diffusivity Dl of the liquid are derived.

νl =
µl
ρl

(5.2)

Dl =
κl

CP,lρl
(5.3)

Both material parameters have dimensions of surface area over time.
Bubble volume oscillations imply compression of the gas in the bubble. This

compression influences the pressure in the bubble. This introduces the equilib-
rium bubble radius R0, the saturated vapor pressure Pv, the isobaric specific
heat capacity of the bubble gas CP,g, and the thermal conductivity of the gas
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κg. The pressure difference over the bubble wall is the Laplace pressure. This
introduces the surface tension σ. The equilibrium pressure P0 and the pressure
fluctuation constitute the pressure in the liquid adjacent to the wall. Further,
the angular frequency ω, the pressure amplitude Pa, the liquid density ρl, the gas
density ρg, and the liquid viscosity µl are also relevant for the bubble dynamics.

The units of the dimensional parameters are listed below. Subscripts are
dropped in this list.

[c] =
m

s

[ρ] =
kg

m3
=
Ns2

m4

[ω] =
1
s

[P ] =
N

m2

[L] = m

[R] = m

[µ] =
Ns

m2

[κ] =
W

mK
=

N

sK

[C] =
J

kgK
=

m2

s2K

[τ ] = s

[β] =
m2

N

[σ] =
N

m
(5.4)

To obtain a complete set of dimensionless groups, Buckingham’s Pi theo-
rem is applied to the obtained list of parameters. There are 18 dimensional
parameters with 4 different base units. A total number of 14 dimensionless
groups is therefore required to specify the problem. The choice of nondimen-
sional groups is somewhat arbitrary. In general, they compare the magnitudes
of two effects. The following set of dimensionless groups is chosen so that effects
whose relevance is in question can be compared to an effect that is expected
to be significant in most cases. For instance, various pressure terms are com-
pared to the ambient pressure because ambient pressure is not expected to be
dominated by any of the other terms in most applications. The corresponding
dimensionless groups are expected to be either small, or of order unity. If one
of the terms dominates the ambient pressure, the significance of other effects
is more readily estimated from a different set of dimensionless groups. For ex-
ample, in the case of cavitation nuclei, which are very small bubbles, Laplace
pressure is dominant. At cavitation inception, the pressure amplitude is larger
than Laplace pressure. A criterium for cavitation inception is therefore more
readily expressed in the ratio of pressure amplitude over Laplace pressure. In
such extreme cases, a different set of dimensionless groups can be obtained from
the ones that are presented here as ratios of these groups.
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The 10 dimensional parameters that specify channel acoustics can produce
6 independent dimensionless groups.

Prl =
νl
Dl

=
CP,lµ

κl
viscosity over heat conduction (Prandtl number)

Wo = Rc

√
ωρl
µ

square root of inertia over viscosity (Womersley number)

Π1 = βc2ρl wall flexibility over liquid compressibility
Π2 = τω wall relaxation time over acoustic period

Π3 =
ωRc
c

pipe radius over wave length (reduced frequency)

Π4 =
ωL

c
pipe length over wave length

When the product Pr Wo2 is large, adiabatic conditions are obtained while
isothermal conditions are obtained for small values of this product [23]. In
either fully isothermal or fully adiabatic conditions, thermal damping in the
channel can be neglected. When the Womersley number is large, the viscous
boundary layer is thin and the acoustic waves can propagate over many wave-
lengths before they are damped significantly. In the limit of small Womersley
number, the flow reduces to Poiseuille flow and the pressure disturbances are
governed by a parabolic equation, more akin to diffusion than to wave propaga-
tion. When Π1 is large, the flow is nearly incompressible. The potential energy
is then stored in the pipe wall, instead of in the liquid. When Π2 is small, the
pipe is locally at rest at all times and wall relaxation provides little damping.
When Π2 is very large, wall relaxation limits the wall movement. In this case,
the magnitude of wall relaxation damping depends on the ratio of Π1 over Π2.
A small value of this ratio indicates that the walls are too slow to follow the
pressure, thus most of the potential energy is stored in the compressibility of
the liquid where it is not damped by wall relaxation. This leads to little damp-
ing. When the reduced frequency Π3 is small, no transverse modes of acoustic
propagation are admitted. As shown by Beltman [23], the reduced frequency is
small in many applications, which greatly simplifies the analysis. When Π4 is
small, compressibility effects are small and the flow becomes incompressible.

The 11 dimensional parameters that specify the bubble dynamics, of which
4 were already encountered in the channel acoustics, produce 7 independent
dimensionless groups. The 4 dimensional parameters that also pertain to the
acoustics specify a length scale, a time scale, and a force scale. The liquid
properties and the frequency provide all scales. The pressure amplitude could
have been expressed as the Mach number, which is the ratio of liquid velocity
over the velocity of sound. This would not be very useful since in linear acoustics,
the Mach number is small per definition. Therefore, the pressure amplitude is
nondimensionalized in the context of the bubble dynamics, where it provides a
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useful comparison.

Pe =
R2

0ωρgCP,g
κg

oscillation over heat conduction (Péclet number)

Re =
R2

0ρlω

µ
unsteady inertia over viscosity (bubble Reynolds number)

Π5 =
σ

P0R0
Laplace pressure over ambient pressure

Π6 =
Pv
P0

vapor pressure over ambient pressure (boiling threshold)

Π7 =
Pa
P0

pressure fluctuation amplitude over ambient pressure

Π8 =
4R3

0ωρlc

3R2
cP0

acoustic coupling from bubble to pipe

Π9 =
ρg
ρl

density ratio

The group Π8 follows from analysis. The acoustic coupling is determined by
Π8, which compares the bubble size with the size of the pipe. This parameter
follows from reflection of an acoustic wave at a bubble in a pipe. Neglect pipe
wall flexibility, viscous and thermal damping, inertia of the radial flow field from
the bubble, vapor pressure, and surface tension. Assume small amplitudes and
a polytropic relation for the pressure in the bubble.

PbV
γ
b = constant (5.5)

A power series expansion of this equation yields a relation between the respective
pressure and volume fluctuations, which are marked with a tilde.

P̃b = −Ṽb
γP0

V0
(5.6)

where γ is the polytropic index, which is γ = 1 for isothermal volume oscillations
and γ = 7

5 for adiabatic volume oscillations of a diatomic gas.
To obtain a relation between the bubble volume oscillations and the acoustic

waves, we introduce the volume of an acoustic wave. Consider a monochromatic
inviscid acoustic wave of amplitude Pa that propagates through a rigid pipe in
the z direction. The pressure due to this wave is

P (z, t) =
1
2
Pae

i(ωt−kz) +
1
2
Pae
−i(ωt−kz). (5.7)

The velocity due to this wave is

u(z, t) = Pa
k

2ρlω

(
ei(ωt−kz) + e−i(ωt−kz)

)
. (5.8)

The volume flow rate due to this wave is the product of the velocity and the
cross sectional area Ac of the pipe. The volume V that has flown through a
cross-section of the pipe is obtained by integrating the volume flow rate over
time.

V (z, t) = Pa
kAc

2iω2ρl

(
e(ωt−kz) − e−i(ωt−kz)

)
(5.9)
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The volume amplitude is

Va = Pa
Ac
ρlcω

. (5.10)

This volume shall be called the volume of the acoustic wave.
The amplitude of the incident wave is Pi, the amplitude of the reflected wave

is Pr, and their sum equals the pressure fluctuation at the bubble.

Pi + Pr = −Ṽb
γP0

V0
(5.11)

The bubble emits waves in both directions, one wave is the reflected wave, and
the other is the modification of the incident wave into the transmitted wave.
Thus, the volume fluctation of the bubble is twice the volume of the reflected
wave.

2Ac
ρcω

Pi = Ṽb (5.12)

combine equations 5.11 and 5.12 to obtain the reflected wave amplitude.

Pi = −
(

1 +
2AcγP0

ρcωV0

)
Pr = −

(
1 +

2
Π8

)
Pr (5.13)

The bubble volume oscillation is driven by the pressure in the pipe, but the
bubble volume oscillation also acts back on the pressure in the pipe. If the
bubble is large, Π8 � 1, the incident wave is completely reflected, and the
transmitted wave vanishes. If the bubble is small, Π8 � 1, the reflected wave
vanishes and the influence of the bubble volume oscillations on the pressure in
the pipe can be neglected. For large Π8, this two-way coupling is dominant.

The bubble volume oscillations are also small when the bubble is large with
respect to the acoustic field in the pipe. The ratio Π7

Π8
is the ratio of the acoustic

volume over the bubble volume. When Π7
Π8

is small, the bubble can absorb the
acoustics with small volume oscillations. When both Π7

Π8
and Π7 are large, the

volume and pressure of the acoustic wave are both large enough to drive the
bubble into nonlinear volume oscillations.

When the Péclet number is large, thermal conduction in the bubble is small,
so that the bubble compression and expansion is nearly adiabatic. A small
Péclet number indicates isothermal volume oscillations. Neither limiting case
exhibits thermal damping. Thermal damping only occurs at intermediate Péclet
numbers. When the bubble Reynolds number is small, bubble volume oscilla-
tions are hardly damped by the viscosity of the radial flow field from the bubble.
When Π5 is large, the bubble is mostly held together by Laplace pressure, in-
stead of ambient pressure. The ratio of vapor pressure over ambient pressure
Π6 is the threshold above which the liquid starts to boil. When Π6 > 1, any
bubble can be made to explode by a large enough finite size perturbation. When
Π7 > 1 and both Π5 � 1 and Π6 � 1, cavitation can occur as the pressure
at the bubble can become negative. For small values of the actuation pressure,
Π7 > 1, the bubble volume oscillations are small except at resonance. A small
density ratio Π9, as in the case of a gas bubble in a liquid, indicates that the
inertia of the bubble gas is negligible with respect to the inertia of the radial
liquid flow field from the bubble.

Of the 14 independent dimensionless groups that are required to completely
specify the complete system, 6 compare the magnitude of effects in the channel
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acoustics, and 7 compare the magnitude of effects in the bubble volume oscilla-
tions. The remaining dimensionless group is the ratio of heat capacities of the
thermal boundary layers in the liquid and in the bubble gas.

Π10 =
κgCP,gρg
κlCP,lρl

(5.14)

For most combinations of gas and liquid, this ratio is small, indicating that the
temperature of the liquid in the bubble wall is nearly constant, irrespective of
the temperature in the bulk of the bubble.

The dimensionless groups that specify the system of a bubble in a pipe
have been determined. The parameter Π8, that determines the importance of
two-way coupling is arguably the most valuable of the constructed dimensionless
groups. With this criterion, researchers can determine whether they can neglect
the influence of the pipe and treat the bubble as if it were in an infinite volume
of liquid, driven by the pressure that would be present in the absence of the
bubble, or whether they need to take this influence into account.

5.3 Case study: a bubble in an inkjet print head

The developed theory is now used to analyse a bubble in an inkjet printhead.
First, the printhead is described and the relevant parameter values are given.
Second, the dimensionless groups are evaluated with these parameter values to
predict which effects are relevant.

The considered inkjet print head consists of a few hundred ink channels.
Each channel is terminated by the ink reservoir at one end, and a nozzle at the
other end as shown in figure 5.1. The pressure in the reservoir is constant. The
channel consists of a few sections where the equilibrium cross-sectional area is
constant over its length. The channel section closest to the reservoir is flexible
and it can be deformed actively by a piezo actuator. The cross-sectional area
change due to the actuator is small with respect to the transverse dimensions.
The nozzle cross-sectional area is much smaller than the channel cross-sectional
area. The nozzle length is of the same order of magnitude as the channel radius.
In reality, this channel section is rectangular, but it is modelled as a cylindrical
channel with the same cross-sectional area.

The relevant parameter values are given below for a typical system.
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x

21

Actuator

channel

Nozzle

Connection

channel
L = 3.5 mm

Glass
channel

3L = 0.4 mmL = 8 mm

1d = 180 µm 

d = 280 µm 
d = 30 µm 4

2,3

Bubble

Figure 5.1: The print head as it is implemented in the model. From left to right:
the actuator channel to which the piezo is attached, the connection channel, the
glass connection channel, and the nozzle.

c = 1250 ms−1

ρl = 1090 kgm−3

ρg = 1.2 kgm−3

ω = 5 · 105 s−1

L = 10−2 m

Rc = 125 · 10−6 m

µl = 0.01 Pa s
κl = 0.15Wm−1K−1

CP,l = 2 · 103 J kg−1K−1

τ = 5 · 10−8 s

β = 5 · 10−10 Pa−1

Pv = 2400 Pa
CP,g = 103 J kg−1K−1

κg = 0.025Wm−1K−1

σ = 0.024 N m−1

P0 = 105 Pa
Pa ∈ [103, 106] Pa
R0 ∈ [0.01, 100] µm

Except for the relaxation time τ and the frequency, all parameters are geomet-
rical parameters or material parameters. The relaxation time given by electric
coupling of actuator electrodes. The capacitance C of the piezo actuator and
the resistance R with which it is coupled to the voltage source, be it a signal
generator or ground, set the relaxation time.

τ = RC = 100 Ω · 500 pF = 5 · 10−8 s (5.15)

The cutoff frequency of the system is chosen as the frequency scale. The ac-
tuation pulses that are used in normal operation of this printhead generate a
pressure spectrum near the nozzle that is dominated by this resonance. The
dominant frequency doubles when a large bubble is present, but the order of
magnitude remains the same. See [7] for details.
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All of the dimensional parameters of the system are now specified. The
dimensionless groups are evaluated and the implications of their values are dis-
cussed. First, consider the situation where the bubble radius is R0 = 10−5 m
and the pressure fluctuation amplitude is Pa = 105 Pa, which is the pressure am-
plitude at normal operating conditions. Later, these parameters will be varied
to study their effect on the bubble dynamics.

Prl = 130 (5.16)

The large Prandtl number indicates that viscous friction dominates dissipation
due to heat conduction. Thermal effects in the acoustics can be neglected.

Wo = 20 (5.17)

The large Womersley number indicates that unsteady inertia dominates viscosity
in the acoustics. Damping of the acoustics occurs only after many wave lengths.
Viscous effects can be neglected in the channel. Note that the nozzle radius is
an order of magnitude smaller than the channel radius. In the nozzle, inertia
and viscosity are comparable.

Π1 = 0.5 (5.18)

Wall flexibility and liquid compressibility are about equally important in the
acoustics. Both have to be taken into account.

Π2 = 0.025 (5.19)

The wall relaxation time is much smaller than the acoustic period. Damping
due to relaxation in the wall can be neglected.

Π3 = 0.04 (5.20)

The small value of the reduced frequency indicates that the pipe radius is much
smaller than the wave length, so that the low reduced frequency approximation
can be applied. The pressure is nearly constant over the cross-section of the
pipe. Transverse acoustic modes can be neglected.

Π4 = 4 (5.21)

The pipe length is about equal to the wave length. Reflections arrive within a
few periods of oscillation. The flow can not be approximated by incompressible
flow, nor can the pipe be considered infinitely long. Both compressibility and
reflections have to be taken into account.

Pe = 20 (5.22)

The large bubble Péclet number indicates that bubble volume oscillations are
nearly adiabatic.

Re = 5 (5.23)

The moderate bubble Reynolds number indicates that unsteady inertia is some-
what larger than viscosity, but viscosity cannot be neglected with respect to the
inertia of the radial flow field from the bubble.

Π5 = 0.024 (5.24)
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Laplace pressure is much smaller than the ambient pressure. The ambient pres-
sure is the dominant force that keeps the bubble from exploding. This criterion
is the same as a criterion given by Hilgenfeldt et al. [24] for small bubbles in an
unbounded liquid.

Π6 = 0.024 (5.25)

Vapor pressure is much smaller than ambient pressure. This indicates that the
ink in the printhead is not boiling.

Π7 = 2 (5.26)

The large bubble limit that Hilgenfeldt et al. [24] give is based on the pressure
fluctuation amplitude, which we capture in Π7. If this dimensionless group is
of order unity or larger, the pressure amplitude of the acoustics is large enough
to drive the bubble into nonlinear volume oscillations.

Π7

Π8
= 2 (5.27)

The volume displacement of the acoustic waves in the channel are of the some
order of magnitude as the bubble volume. The volume of the acoustics is large
enough to drive the bubble into the nonlinear regime of volume oscillations.
Since both the volume and the pressure amplitude of the acoustics are large
enough to drive the bubble into nonlinear oscillations, nonlinearity cannot be
neglected.

Π8 = 1 (5.28)

The acoustic coupling from bubble to pipe is significant, but not dominant.
Some of the acoustics will be reflected by the bubble, and some will be trans-
mitted. The two-way coupling between the bubble volume oscillations and the
channel acoustics cannot be neglected.

When the bubble volume is varied, a number of regimes are encountered,
demarcated by one of the dimensionless groups becoming large or smaller than
unity. The novel elements in the analysis are Π7

Π8
for the volume of the acoustic

field over the bubble volume, and Π8 for the magnitude of two-way coupling
between the acoustics and the bubble volume oscillations. These dimensionless
groups depend on the bubble volume. For large bubbles, both groups become
large, making the two-way coupling dominant, but the bubble volume oscilla-
tions are restricted to small amplitudes.

At a bubble radius of R0 � 13 µm, Π7
Π8

becomes large and Π8 becomes small.
This indicates that two-way coupling can be neglected, but the volume of the
acoustic field is large enough to drive the bubble into the nonlinear regime.
As the bubble explodes during a period of low pressure, it again becomes large
enough to make two-way coupling significant. Both dimensionless groups change
at nearly the same time since the pressure amplitude is of the same order of
magnitude as the ambient pressure. For smaller actuation amplitudes, there is
an intermediate region where two-way coupling is small while the bubble volume
oscillations are in the linear regime.

For very small bubbles, where Π5 � 1 is large, Laplace pressure dominates
ambient pressure. If the ratio of pressure amplitude over ambient pressure
Π7 ∼ 1 is still of order unity, the pressure amplitude is small with respect to
Laplace pressure for such small bubbles. The bubble volume oscillations become
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Figure 5.2: The different regimes of bubble volume oscillations and the corre-
sponding equilibrium bubble radius. Large bubbles are not only driven by the
acoustics, but their volume oscillations also act back on the acoustics. This
two-way coupling between bubble volume oscillations and pipe acoustics is not
present for smaller bubbles.
(*) Two-way coupling is also relevant for bubbles whose equilibrium radius is
smaller than 1 µm, if the pressure and volume amplitude of the acoustics are
large enough to cause the bubble to expand into the two-way coupling regime.

small again. This regime corresponds to a bubble radius of R0 � 250 nm,
which is very small indeed. Since bubbles usually dissolve at a rate of 1 pl s−1

between actuations, this bubble would dissolve in 65 µs. This regime of very
small bubbles, where Laplace pressure limits volume oscillations, will not be
encountered in most applications.

When both the pressure amplitude and the bubble size are varied, the phase
diagram, figure 5.3 shows 3 major regions:

2-way coupled, large volume oscillations Both pressure amplitude and
volume amplitude are large (Π7

Π8
> 1 and Π7 > 1), and Laplace pressure is

small (Π5 < 1) so that the bubble volume oscillations are large with respect to
the bubble volume. Even if 2-way coupling is small at the equilibrium bubble
radius (Π8 � 1), the bubble can expand to a size where this 2-way coupling is
important due to the large acoustic field. An analysis of the bubble dynamics
in this regime will have to take into account both 2-way coupling and nonlinear
volume oscillations.

2-way coupled, small volume oscillations The volume amplitude of the
acoustic field is too small to induce large volume oscillations (Π7

Π8
< 1). In a

part of this regime (Π7 > 1), the pressure fluctuation amplitude is also too small
to induce large volume oscillations. In this regime, 2-way coupling cannot be
neglected, but the bubble volume oscillation is linear.

1-way coupled, small volume oscillations In the region where the pressure
fluctuation amplitude is small (Π7

Π8
< 1 ), and/or Laplace pressure is large (Π5 >
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Figure 5.3: Phase diagram of the type of bubble volume interaction versus equi-
librium bubble radius and actuation amplitude. There are 3 major regimes:
2-way coupling is important and volume oscillations are large, 2-way coupling
is important and volume oscillations are small, and 2-way coupling is not im-
portant and volume oscillations are small. The boundaries between different
regimes are the locus where one of the dimensionless groups is becomes equal
to one. For different geometries and materials, the boundaries between the
regimes can change. Usually, all the other parameters are fixed by the design
and fabrication of system. The bubble radius and actuation amplitude are the
variables that are most easily modified. See the main text for an explanation of
the numbered regions.

1), and 2-way coupling at the equilibrium radius is small (Π8 < 1), the bubble
volume oscillations are small and 2-way coupling is small.

More than one criterion for small volume oscillations can be satisfied si-
multaneously besides the criteria that determine the boundary of the regime.
For instance, viscous friction in the radial flow field from the bubble can limit
oscillations if the Reynolds number is small Re < 1 and

Π7

Π8
· Re

3
2 < 4Π3 ·Wo. (5.29)

The small Reynolds number and the small two-way coupling ensure that the
pressure amplitude is balanced by viscous friction in the radial flow field from the
bubble. The second condition is obtained by balancing the viscous term in the
Rayleigh-Plesset equation with the imposed pressure amplitude. In dimensional
parameters, this condition is simpler.

Pa
4µω

< 1 (5.30)

This extra restriction on the volume oscillations is irrelevant for the parameters
of the considered inkjet printhead since even if it weren’t fulfilled, volume os-
cillations would still be small due to the small pressure amplitude. For higher



74 CHAPTER 5. REGIMES OF BUBBLE VOLUME OSCILLATIONS

frequencies or higher viscosities, this condition can extend the region where bub-
ble volume oscillations are small. The numbered subregions in figure 5.3 differ
in which the conditions for small volume oscillations are satisfied.

1. Laplace pressure is large

2. pressure amplitude is small and Laplace pressure is large

3. pressure amplitude is small

4. viscous damping is large and Laplace pressure is large and pressure am-
plitude is small

5. viscous damping is large and pressure amplitude is small

6. pressure amplitude is small and volume of the acoustic waves is small

7. pressure amplitude is small and volume of the acoustic waves is small and
viscous friction is large

8. pressure amplitude is small and volume of the acoustic waves is small

9. volume of the acoustic waves is small

10. all of the above

An effect is only negligible where the corresponding dimensionless group is
large or small, whichever is appropriate. The given boundaries of the regimes
are the locations where the corresponding dimensionless group is equal to one.
Therefore, there is a transitional region, around the indicated regime boundaries.
The width of this transitional region cannot be assumed ex ante to be constant
in the given presentation and should, if necessary, be determined by experiments
or further analysis.

5.4 Numerical model

The predicted regimes in the phase space of a bubble in a pipe are examined with
a numerical model of a bubble in an inkjet printhead. A model is developed
that can cover the entire phase space of driving amplitude and bubble size
that experimental conditions permit to study. In particular, this model should
neither be restricted to linear oscillations, nor to bubbles that are so small that
their influence on the pressure in the channel is negligible.

The response of the parts of the system that exhibit linear behavior can
be efficiently calculated in the frequency domain. Linear volume oscillations of
a bubble in the regime where two-way coupling is relevant can be calculated
with the linearized model of Jeurissen et al. [20], where a formulation in the
frequency domain is used. However, the nonlinear case cannot be solved as
conveniently in the frequency domain, since the nonlinearity in the governing
equations introduce coupling terms between the various frequency components.
Only the channel acoustics remain linear in character. Correspondingly, the
channel acoustics are still calculated with the linear model of Jeurissen et al.
The Rayleigh-Plesset equation, that describes the bubble volume oscillations, is



5.4. NUMERICAL MODEL 75

not linearized. The nozzle flow is not linearized either.1 The nonlinear equations
for the bubble volume and the nozzle flow are solved in the time domain, while
the channel acoustics are calculated in the frequency domain.

The flow field in the nozzle is decomposed into a part due to the bubble
volume oscillations and the flow due to the pressure drop over the nozzle, the
nozzle flow. The flow field due to the bubble is approximated by a modified
Rayleigh-Plesset equation. The nozzle flow is axisymmetric, and this symmetry
is used in the calculation of this flow. The nozzle flow calculation takes the
pressure at the interface with the channel as an input, and gives the flow rate
through this interface due to the nozzle flow as an output. The flow rate due
to the nozzle flow and the flow rate from the bubble constitute the total flow
through the interface. This flow is coupled to the channel acoustics to obtain
the boundary condition at the channel.

Channel acoustics The channel acoustics impose a relation between the pres-
sure and volume flow rate at the interface between the domains of the nozzle
flow and the channel acoustics. This relation depends on the parameters of the
channel and the acoustic waves that arrive at the nozzle. The interaction of
the nozzle flow and the channel generates acoustic waves that enter the chan-
nel. These waves propagate in the channel, they attenuate, and they reflect off
the interface between the actuation channel and the connection channel, and
the end of the actuation channel where it is connected to the reservoir. These
reflections also attenuate and, after a finite period of time, they reach the inter-
face between the channel and the nozzle. This is one part of the acoustic waves
that arrive at the nozzle. The other part consists of the acoustic waves that are
generated by the actuator.

The acoustic wave field is decomposed into two Riemann invariants.

R1 =
1
2
P − 1

2
ρlcu

R2 =
1
2
P +

1
2
ρlcu

The first Riemann invariant is the wave that travels into the channel. The
second is the wave that arrives at the nozzle from the channel. If the second
Riemann invariant and the velocity are known, the first Riemann invariant is
also known. The velocity into the channel is obtained from the nozzle flow and
the bubble dynamics. The objective of the channel acoustics calculation is to
determine the second Riemann invariant.

The second Riemann invariant consists of waves that are generated by the
actuation Pa, and of waves that originated from the nozzle. The channel acous-
tics are calculated in the frequency domain. In the frequency domain, analytical
expressions of the transfer functions are available in closed form [20]. The trans-
fer function can be converted to an impulse response by a Fourier transform.
With this impulse response, the acoustic waves that arrive at the nozzle are
given by a convolution integral.

R2 = Pa +
∫ t

−∞
R1(t− τ)f(τ) dτ (5.31)

1This resembles the procedure of efficient spectral methods for the Navier-Stokes equation.
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This convolution integral is evaluated numerically in the numerical model.
Many different choices of impulse response are available. The impulse re-

sponse from waves that are emitted into the channel to waves that arrive at the
nozzle from the channel is chosen because of two advantages. First, this impulse
response is the only one where the instantaneous component vanishes. All other
impulse responses for this system have a dirac delta impulse at t = 0. This in-
stantaneous component can be removed by incorporating it into the boundary
condition as an algebraic term, but the present method is simpler. Second, this
impulse response is the most compact impulse response since there are no reflec-
tions from the interface with the nozzle flow calculation domain. This boundary
absorbs all of the energy that it receives, damping the acoustic waves as fast as
possible.

The presented analysis for the boundary condition is exact in the inviscid
limit. In the calculation of the impulse response, viscosity is taken into account,
but viscosity was neglected in the definition of the Riemann invariants. Since
the Womersley number is large in the channel, the error that is introduced by
this approximation is expected to be small.

Bubble radius The Rayleigh-Plesset equation is an ODE for the bubble ra-
dius and its time derivatives, for a given pressure P∞ far away from the bubble.
The Rayleigh-Plesset equation balances the pressure in the bubble with inertia,
viscosity, and surface tension.

RR̈+
3
2
Ṙ2 =

1
ρ

((
P0 +

2σ
R0
− Pv

)(
R0

R

)3γ

+ Pv −
2σ
R
− 4µṘ

R
− P∞

)
(5.32)

Two distinct finite size effects might be relevant. The first is the influence of
the bubble volume oscillations on the pressure far away from the bubble. In the
Rayleigh-Plesset equation, this is absorbed in the P∞ term, and it is the result
of the interaction between the bubble volume oscillations, the nozzle flow, and
the channel acoustics. It is obtained by interpolating the pressure field from
the nozzle flow calculation at the location of the bubble. The importance of
the influence of the component of the pressure that is generated by the bubble
volume oscillations, can be estimated from the magnitude of Π8 as shown in
the previous section. The second finite size effect is the influence of the radial
flow field from the image of the bubble in the channel wall. The pressure due to
the radial flow from the bubble is small at a distance that is twice the bubble
radius. The pressure that accompanies the radial flow from the bubble consists
of two components. The first component is proportional to the velocity gradient,
which scales as r−3. The second component is proportional to the square of the
velocity, which scales as r−4. Doubling the distance to the center of the bubble
reduces the pressure due to the radial flow field by a factor 8. Note that the
image bubble is twice as far away as the wall. Unless the bubble is very close to
the wall, the effect of the image bubble on the volume oscillations is negligible.
Only the coupling with the channel acoustics is expected to be relevant in this
case.

The channel acoustics and the bubble volume oscillations are coupled via
the nozzle flow. The flow into the channel is the sum of the flow from the nozzle
and the flow from the bubble. The pressure far away from the bubble P∞ is
obtained by evaluating the pressure field from the nozzle flow calculation at the
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location of the bubble. The pressure at the channel is a boundary condition for
the nozzle flow. This constitutes the full two-way coupling between the bubble
volume oscillations, nozzle flow, and channel acoustics.

Nozzle flow The nozzle flow is calculated with a Navier-Stokes solver. This
solver uses

• axisymmetry

• a staggered cartesian grid

• first order upwind differencing for the advection term (finite volume for-
mulation)

• second order central differencing for the viscous term

• a projection method to project the imperfect time derivative due to ad-
vection and viscosity onto a solenoidal velocity field

• second order central differencing for the pressure term (finite volume for-
mulation)

• a direct solver for the discretized pressure poisson equation, where the
velocity at wall cells is set to zero to satisfy zero normal flow and no-slip
simultaneously

• a standard fourth order Runge-Kutta ODE solver with an adaptive step
size

At the interface between the channel and the nozzle flow domain, an inlet bound-
ary condition is imposed at the pressure that is imposed by the channel acoustics
calculation. At the end of the nozzle, where the meniscus is located, an inlet
boundary condition is imposed at a pressure that follows from Laplace pres-
sure and inertia, as described in the next paragraph. Since the geometry is
fixed, the discretization of the pressure Poisson equation is also fixed. The
discretized pressure poisson equation is solved with an LU decomposition with
column reordering. This LU decomposition is calculated once, at the start of
the simulation. With this LU decomposition of the pressure Poisson equation,
the nozzle flow can be calculated in O(N2) flops, where N is the total number
of cells.

Boundary condition at nozzle end At the meniscus, a Dirichlet boundary
condition is imposed on the pressure. Since the meniscus is not stationary
in reality, a full free surface treatment is necessary to completely capture the
dynamics of the meniscus evolution. The added complexity of such a free surface
treatment would increase the calculation time. However, the details of the
meniscus evolution are not the object of study in this research. An approach
that retains only the effects that are relevant to the bubble volume oscillations
is more efficient. An approximation of the pressure at the end of the nozzle,
that retains the effects of the mensicus that are relevant to the bubble dynamics
but does not increase the complexity or calculation time, is sought.

The meniscus influences the volume oscillations mostly through its effect on
the pressure. When a constant pressure is imposed at the end of the nozzle, the
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Figure 5.4: The nozzle, with the control volume

effect of the meniscus dynamics is neglected. There are two components of the
meniscus dynamics that influence the pressure in the nozzle. The first compo-
nent is the pressure at the meniscus which is determined by the meniscus shape
through the Laplace pressure. The other component is the difference between
imposing this pressure at the meniscus interface and imposing the pressure at
the end of the nozzle. Both effects can be approximated by analysis of the
control volume that contains the region where the meniscus oscillates, as shown
in figure 5.4. The force on the ink in this control volume by surface tension is
applied by the nozzle wall at the contact line. Only the axial component of the
surface tension yields a nonzero contribution when integrated over the contact
line.

Fcap = −2πRnσ sin (arctan (∂rzm)) (5.33)

The axial position of the meniscus zm is a function of radial position and time.
This force is proportional to the nozzle radius Rn, so that the Laplace pressure
Pl, which is force per area, is inversely proportional to the nozzle radius.

Pl = − 2
Rnσ

sin (arctan (∂rzm)) (5.34)

The slope of the meniscus at the contact line scales with the ratio of average
meniscus position over nozzle radius. Higher order eigen modes of meniscus
oscillation are neglected, so that the meniscus is a paraboloid.

∂rzm = 2
〈zm〉An

Rn
(5.35)

The average meniscus velocity is the ratio of the volume flow rate of ink volume,
over the nozzle cross-sectional area. This follows from geometry.

d
dt
〈zm〉An

=
1
An

∫
An

uz da (5.36)
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In this expression, the nozzle cross-sectional area is evaluated at the meniscus
position. Droplet formation removes ink from the nozzle, therefore it causes
meniscus ratraction. This is modelled by limiting the meniscus position so that
it does not protrude more from the meniscus than the specified distance. In this
investigation, the meniscus position is limited to a distance equal to the nozzle
radius. When the mensicus position is determined, the Laplace pressure can be
calculated by equation 5.34. This completely specifies the Laplace pressure.

The influence of the meniscus position on inertia is a correction to the inertia
in the calculation with a fixed meniscus position. The void that is present
when the meniscus is retracted decreases the inertia of the ink in the nozzle.
The inertia of the part of the meniscus that is occupied by the void should be
subtracted. The inertia of the nozzle can be calculated with the same method
as used by Jeurissen et al. [20], but extended to include the effect of advection.
The pressure drops due to unsteady inertia Pi and due to advection ∆P over
a length of nozzle between z = 0 and z = zm can be analytically calculated if
advection and viscous friction are neglected, using Bernouillli’s equation.

Pi = −dq
dt
ρ

∫ zm

0

1
An

dz (5.37)

The flowrate q is the integral of the axial velocity.

q =
∫
An

uz da (5.38)

Viscosity cannot be completely neglected, as indicated by the Womersley num-
ber, which is about Wo = 3 in the nozzle. However, the correction to the inertia
is only relevant when the liquid that will form the droplet is ejected. This liquid
is ejected at a velocity of about u = 20 ms−1, which yields a nozzle Reynolds
number of about Ren = 30, indicating that advection is dominant when the cor-
rection to inertia is significant. The entrance length is about 0.24RnRe = 7Rn,
which is larger than the nozzle length. Advection cannot be neglected in the
correction to the pressure, but viscosity can be neglected.

To take into account the effect of advection in the correction on the meniscus
pressure, this effect is expressed in terms of the nozzle shape and the nozzle
flow. Using the same approach as in the calculation of inertia, the velocity in
the nozzle is determined by the nozzle flow and shape.

uz =
q

An
(5.39)

The pressure drop due to advection is given by Bernouilli’s equation.

∆P =
1
2
ρ
(
u(0)2 − u(z)2

)
=

1
2
ρq2

(
1

(An (0))2 −
1

(An (zm))2

)
(5.40)

In the pressure that is imposed at the end of the nozzle, the corrections for
Laplace pressure and inertia are absorbed into the imposed pressure. The indi-
vidual contributions are given by equations 5.34 and 5.37.

Pm = Pl + Pi + ∆P (5.41)



80 CHAPTER 5. REGIMES OF BUBBLE VOLUME OSCILLATIONS

This specifies the pressure that is imposed at the end of the nozzle. For conve-
nience, this equation is also given with the inertia terms inserted.

Pm = bPl+
1
2
ρq2

(
b (An(zm))−2 − (An (0))−2

)
+(1−b)

(
Pc −

1
2
ρq2 (An(zc))

−2

)
(5.42)

The pressure at the channel Pc follows from the channel acoustics calculation.
The auxiliary function b is a geometrical quantity that describes the nozzle
shape.

b =

∫ 0

zc

1
An

dz∫ zm

zc

1
An

dz
(5.43)

Note that for very large meniscus retractions, this auxiliary function has a sin-
gularity. This cannot be avoided with this method, but since the singularity
lies at a meniscus retraction that equals the length of the domain of the nozzle
calculation, a full free surface treatment would also fail at these conditions. The
meniscus must not retract all the way through the nozzle calculation domain. If
this occurs, the nozzle calculation domain must be increased. The cause for this
singularity serves to illustrate the method. From the pressure at the interface
with the channel and the pressure at the meniscus, the pressure that would arise
if the nozzle were completely filled is extrapolated. If the meniscus is located at
the interface, the two abscissa coincide so that no extrapolation can be done.

The obtained set of delay differential equations that govern a bubble in an
inkjet printhead is solved numerically. The method for solving delay differential
equations that was described by Shampine and Thompson [21] is not directly
applicable in this case. The discretized equations for the nozzle flow constitute
a large set of nonlinear equations, while the delayed influence is a single scalar.
Storing the entire previous history is not necessary. In the model of bubble
dynamics in an inkjet printhead, the evolution of the system is calculated over
a small period at time, a period that is smaller than the time between the
generation of acoustic waves and the arrival of the first reflection. The waves
that arrive at the nozzle from the channel during the next period, are calculated
from the flow rate into the channel during the previous period. Note that this
flow rate is a single scalar function of time. The arriving waves determine the
relation between the flow rate and the pressure. This relation is used as a
boundary condition for the nozzle flow. This completes the description of the
numerical model.

5.5 Validation

The theoretical predictions were tested with the developed numerical model.
First, the bubble volume oscillations are examined in detail, at the actuation
amplitude of normal operating conditions of the printhead and over a range
of equilibrium bubble volumes. Second, the amplitude of volume oscillations
and its influence on the pressure was calculated over a wide range of bubble
volume and actuation amplitude, providing a direct validation of the theoretical
predictions based on the dimensionless groups.

The prediction of the magnitude of volume oscillations and the relevance
of two-way coupling was verified by calculating the evolution of a bubble in
and inkjet printhead at 4 different bubble radii. The printhead is driven by
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Figure 5.5: Radius versus time for bubbles of different sizes in an inkjet print-
head. The equilibrium radius of the bubble is R0 = 1 µm (top left), R0 = 10 µm
(top right), R0 = 30 µm (bottom left), and R0 = 100 µm (bottom right). The
R0 = 30 µm radius bubble exhibits volume oscillations of the same order of
magnitude as the bubble volume. The volume oscillations of the R0 = 100 µm
bubble are negligible with respect to the bubble volume, while the volume oscil-
lations of the smaller bubbles, with R0 = 1 µm and R0 = 10 µm, are an order of
magnitude larger than the bubble volume. The R0 = 1 µm bubble exhibits one
explosion when the second low pressure wave arrives. The R0 = 10 µm bubble
exhibits the large expansions, violent collapses, and afterbounces that are well
known from the strongly nonlinear response of the Rayleigh-Plesset equation.
The large bubbles oscillate smoothly at a frequency of about 40 kHz, which
corresponds closely to 44 kHz, the lowest eigen frequency of the channel acous-
tics. The Minnaert angular frequencies of these bubbles are 3 MHz, 300 kHz,
100 kHz, and 30 kHz, respectively. The largest bubble’s volume oscillations
are very small, even though it is driven at a frequency close to its resonance
frequency in an infinite volume of liquid.
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Figure 5.6: Velocity of the ink in the nozzle versus time, when bubbles of
different sizes are present (solid line) and in the undisturbed situation where
no bubble is present (dashed line). This nozzle velocity is the velocity of the
ink averaged over the cross section of the nozzle. The equilibrium radius of the
bubble is R0 = 1 µm (top left), R0 = 10 µm (top right), R0 = 30 µm (bottom
left), and R0 = 100 µm (bottom right). The disturbance of the pressure by
volume oscillations of a R0 = 1 µm bubble is so small that the graph of the
nozzle velocity with a bubble completely obscures the graph of the undisturbed
nozzle velocity. The R0 = 10 µm bubble exerts a noticable, but not dominant
influence on the nozzle velocity. A R0 = 30 µm bubble strongly influences the
nozzle velocity. In the presence of a R0 = 100 µm bubble, the nozzle velocity
becomes negligible with respect to the undisturbed nozzle velocity.
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Figure 5.7: Driving pulse: voltage versus time. This pulse is typically repeated
at a rate of 10 kHz, so that the portion shown is exactly one cycle. This pulse
generates acoustic waves in the channel with an amplitude of Pa = 105 Pa, when
applied to the described printhead.

a single trapezoidal pulse with a rising slope, high time, and falling slope of
5 µs − 5 µs − 3 µs, respectively, as shown in figure 5.7. Before and after
the pulse, the actuator voltage is zero. The volume oscillations are shown in
figure 5.5. For bubble radii of R0 = 1 µm and R0 = 10 µm, large volume
oscillations were predicted, as summarized in figure 5.2. The bubble radius
changes from R = 1 µm to almost R = 3 µm, and from R = 10 µm to R =
20 µm. These radius fluctuation amplitudes correspond to volume fluctuation
amplitudes of ∆V = 22V0 and ∆V = 6V0. These are large volume fluctuations,
as predicted. A bubble radius of R0 = 30 µm is at the boundary of small
and large predicted volume oscillations. The radius fluctuation amplitude is
R = 5 µm, which is small with respect to the equilibrium radius. The volume
fluctuation amplitude is ∆V = 1.6V0 which is neither large nor small. A bubble
radius of R0 = 100 µm is well within the range where small volume oscillations
are predicted. The amplitude of the radius fluctuation is R = 0.5 µm, which is
small with respect to the equilibrium radius. The volume fluctuation amplitude
is ∆V = 0.015V0 which is very small, as predicted. These numerical simulations
confirm the theoretical predictions of the volume oscillation amplitude at the
standard operating actuation amplitude of the inkjet printhead.

The relevance of two-way coupling between the channel acoustics and the
bubble volume oscillations was also verified with the presented numerical sim-
ulations. This influence can be evaluated by comparing the velocity of the ink
in the end of the nozzle when a bubble is present to the undisturbed velocity.
The average over the cross-section at the end of the nozzle, of the axial veloc-
ity of the ink is used as a metric for comparison. This average velocity uz is
called the nozzle velocity. For low frequencies, the nozzle velocity can be con-
sidered proportional to the pressure in the channel for purposes of inspection.
The nozzle velocity is driven by the pressure in the channel. The pressure drop
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over the nozzle is balanced by inertia and viscous friction. The nozzle acts as
a low-pass filter from pressure in the channel to velocity in the nozzle. At the
cutoff frequency, viscous friction and inertia are of the same order of magni-
tude. This is indicated by a Womersley number of unity. The cutoff frequency
is ωc ∼ 400 kHz. At frequencies below this cutoff frequency, the nozzle velocity
is a good metric for the channel pressure.

The nozzle velocity versus time is shown in figure 5.6. The influence of a
R0 = 1 µm bubble on the nozzle velocity is negligible. Thus, the influence
on the channel acoustics of such small bubbles is also negligible and two-way
coupling can be neglected, in agreement with the theoretical prediction. At a
bubble radius of R0 = 10 µm, two-way coupling is significant, but not dominant.
At a bubble radius of R0 = 30 µm, the nozzle velocity is strongly influenced by
the bubble volume oscillations. At a bubble radius of R0 = 100 µm, the nozzle
velocity is negligible with respect to the undisturbed nozzle velocity. These
numerical simulations confirm the theoretical predictions of the relevance of
two-way coupling at the standard operating actuation amplitude of the inkjet
printhead.

The theoretical predictions that are summarized in the phase diagram of
figure 5.3 are now verified over a range of both actuation amplitude and bubble
radius. As before, the bubble radius fluction amplitude and the nozzle veloc-
ity are evaluated to assess the volume fluctuation amplitude and the relevance
of two-way coupling between the bubble volume oscillations and the channel
acoustics, respectively. The ratio v of the L2 norm of the volume fluctuation
over the equilibrium volume is used as a metric for the amplitude of the bubble
volume fluctuations.

v =

√
1
T

∫ T
0

(V − V0)2 dt

V0
(5.44)

The value v = 0.5 is used as threshold. The ratio Tw is used as a metric for the
relevance of two-way coupling and the value Tw = 0.2 is used as threshold.

Tw =

√
1
T

∫ T
0

(uz − uz,R=0)2 dt√
1
T

∫ T
0

(uz,R=0)2 dt
(5.45)

This metric is small when the bubble volume oscillations have no significant
effect on the pressure, and of order unity when the influence of the bubble
volume oscillations on the pressure is significant. Note that a value of Tw = 1
indicates a large influence. This metric is exactly unity when the acoustic field
is completely absorbed by the bubble so that the pressure fluctuation amplitude
vanishes.

Both the Tw and v were calculated from the results of the numerical sim-
ulation for a range of bubble volumes and actuation amplitudes. The results
are plotted into the relevant part of the phase diagram, see figure 5.8. The
numerical results confirm the theoretical predictions based on the dimension-
less groups. For very small bubbles, two-way coupling is insignificant for all
actuation amplitudes that were simulated, even though the pressure amplitude
is large enough for large bubble expansions. In these cases, the bubble volume
remains small with respect to the volume of the acoustic field during the entire
droplet formation cycle, although it becomes at least 1.5 times as large as the
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Figure 5.8: Locations where the amplitude of bubble volume oscillations is
larger than 1

2 (+ signs) and locations where the relevance of two-way coupling
is significant (larger than 1

5 , circles), obtained from the results of the numerical
calculations. Where two-way coupling was not found to be significant and the
bubble volume oscillations were small, dots are drawn. The lines indicate where
the transitions between different regimes were predicted by the dimensionless
groups. In the top left region, volume oscillations were predicted to be large
and as a result, two-way coupling was also predicted to be large if the bubble
expands to a large volume. Volume oscillations are indeed large in this region,
and two-way coupling is significant in a large part of this regime. For very
small bubbles, two-way coupling is small. In these cases, the bubble does not
expand to a volume that is large enough to influence the pressure, although
the volume oscillations are large with respect to the equilibrium bubble volume.
In the lower right region, two-way coupling was expected to be important, but
small volume oscillations were predicted. These predictions are confirmed. In
the lower left region, small volume oscillations and small two-way coupling were
predicted. These predictions are also confirmed.
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equilibruim volume. With the chosen threshold values, the transitions between
regimes are within 20% of where they were predicted.

5.6 Conclusion

Bubble volume oscillations in an inkjet printhead are driven by an acoustic field.
When the bubble in turn influences the acoustic field, there is two-way coupling
between the bubble and the acoustic field. The relevant regimes of volume
oscillations of a bubble in a pipe have been identified. Theoretical predictions
of the magnitude of bubble volume oscillations in a pipe and the relevance of two-
way coupling were derived analytically and verified with numerical simulations.
The predictions were confirmed. For a bubble in an inkjet print head, this two-
way coupling is nearly always significant. Only for small actuation amplitudes
(Pa � 105 Pa) and small bubbles (R0 � 12 µm) can two-way coupling be
neglected.
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Chapter 6

Translation of a bubble in
an inkjet printhead1

The evolution of a bubble that has been entrained into an inkjet
printhead is revealed using numerical simulations. To this end, a
numerical model is developed, based on the Rayleigh-Plesset equa-
tion, full coupling with the flow field in the nozzle and the channel
acoustics, and convection-diffusion for the gas exchange between the
bubble and the ambient liquid. We show that the evolution of the
bubble critically depends on its initial position. There are regions
where bubbles that are entrained can be ejected within several drop-
let formation cycles. In other regions, the bubble moves towards a
corner in the printhead, where it grows towards a stable diffusive
equilibrium. Even before the bubble has reached this equilibrium, it
has become so large that it disrupts the droplet formation process.

6.1 Introduction

In inkjet printing, nozzle failure must be dealt with to increase productivity [1].
Nozzle failure is caused by an air bubble that has been entrained into the nozzle.
When a bubble is entrained, it is initially too small to significantly disturb the
droplet formation. If the bubble remains in the channel for a few hundreds of
actuations, it grows by rectified diffusion of dissolved air towards the bubble.
Eventually, it is large enough to disrupt the droplet formation. This disruption
of the droplet formation is called nozzle failure. Nozzle failure does not occur
when the bubble is ejected from the nozzle before it is large enough to cause
nozzle failure. To predict when such a recovery by bubble ejection can occur,
we need to understand how a bubble moves through a printhead towards the
meniscus where it can be ejected, and how a bubble grows in a printhead.

The application of analytical techniques is complicated by the large number
of forces that act on the bubble. Experimental observations of the bubble motion
are complicated by the small size of the bubble, the small time scales, and

1This chapter will evolve towards a manuscript to be submitted to J. Fluid Mech.: Roger
Jeurissen, Arjan van der Bos, Hans Reinten, Marc van den Berg, Herman Wijshoff, Michel
Versluis, Detlef Lohse, Translation of a bubble in an inkjet printhead.
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the fact that a normal printhead is made of opaque material. Therefore, we
extend the numerical model of chapter 5 to study the motion and growth of an
air bubble in an inkjet printhead. The printhead is also described in chapter
5. This model is used to predict the translation of the bubble per droplet
formation cycle, for a range of axial positions, radial positions, and bubble
sizes. These results are analyzed to extract the translation maps of the bubble
for different bubble sizes. This information can be used to design future studies
that do include experimental observations, and to interpret the results from
those studies. The present study consists entirely of numerical modeling.

6.2 Numerical model

The objective of the numerical model that is described in this chapter is to
calculate the motion and growth of a bubble in an inkjet printhead. A rigorous
hydrodynamic treatment of such a bubble would require solving the two-phase
flow problem by a surface tracking or surface capturing method. Although the
accuracy and validity of such a rigorous approach is desirable, such an approach
is not feasible because of the calculation time that a parameter study with these
methods would require. The results would also be harder to interpret in terms
of the distinct effects. Therefore, the interaction between the bubble and the
ambient liquid is approximated with point force models, even when the bubble
is not small with respect to the distance between the bubble and a wall. Since
detailed experimental results are not available and full numerical simulations
are not yet feasible, these approximations are necessary.

In our model, the motion of a bubble in an inkjet printhead follows from
a force balance. The mass of the bubble itself is negligible so all the forces
must sum to zero. The forces on the bubble that are considered are drag, lift,
pressure gradient forces, and added mass. The viscous drag force is decomposed
into a steady component called steady drag, and an unsteady component called
history force. Added mass, reflects the momentum in the velocity field over the
bubble. The pressure gradient forces are the Bjerknes forces, which arise from
the pressure gradient of the ambient flow.

The forces on a bubble in an infinite volume of liquid have been studied
extensively [4, 6, 11–14]. The forces on a bubble near a flat wall have recently
been studied, [5, 7] to some extent. A wall influences drag, added mass, and
lift. The presence of a wall also introduces a new force, secondary Bjerknes
force. Originally, Bjerknes studied the acoustic force between two bubbles, but
the same results have been applied to a bubble near a flat wall [3]. In that
case, secondary Bjerknes force is the force between a bubble and its image in
the wall [16]. When the wall is not flat, an image bubble cannot be defined so
that all the boundary conditions are satisfied, but secondary Bjerknes force is
present nonetheless. The secondary Bjerknes force on a bubble that arises in
a finite space has not been studied as extensively. However, knowledge of this
force is necessary for the simulation of the motion of an air bubble in an inkjet
printhead. Therefore, the secondary Bjerknes force that arises in a finite space
is derived by a potential flow analysis.

History force is hard to calculate in the low Reynolds number regime [12]
since the force is nonlocal in time. The history force reflects the interaction
between the bubble and its wake field. In the high Reynolds number regime,
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this force is even harder to calculate since it is now not only nonlocal in time,
but also subject to nonlinear evolution. In this regime, a complete calcula-
tion of the full 3-dimensional flow is necessary to calculate history force. It is,
however, negligible in this case. The mean flow is of the same order of mag-
nitude as the fluctuation. This mean flow convects the wake field away from
the bubble, precluding any interaction with the bubble. The only interaction
between the bubble and the wake field is the generation of the wake field. The
time-dependent radius can have a significant effect on the drag, as shown by
Magnaudet and Legendre [13], but the drag remains finite even when the bub-
ble collapses. Therefore, the total momentum that is transferred by viscous
friction to the bubble during a violent collapse is small due to the small time
scale. The drag coefficient is taken equal to the steady flow value. For the
entire range of expected Reynolds numbers Re < 20, Michaelides [11] gives an
expression for the drag coefficient.

cd =
16
Red

(1 + 0.1Red)− 0.02Red ln (Red) (6.1)

where the Reynolds number is based on the diameter of the bubble.

Red =
2Rbu
ν

(6.2)

This expression is valid for small Eotvos numbers. The Eotvos number Eo is
the ratio of pressure gradient over surface tension.

Eo =
2|∇P |Rb

σ
(6.3)

When the Eotvos number is small, surface tension is dominant, so the bubble
remains nearly spherical. The maximum pressure gradient scales as the pressure
fluctuation amplitude over the nozzle length. The pressure fluctuation ampli-
tude is at most of the same order of magnitude as atmospheric pressure. When
this magnitude of the pressure gradient is used, the Eotvos number is not small.

Eo =
4P0R

2
b

Lnσ
= 10 (6.4)

In the nozzle, the small Eotvos number expression is not valid. In the channel,
the relevant length scale is the wave length, which is about λ = 1 cm. This
gives a Eotvos number of Eo = 0.05. In the channel, the small Eotvos number
expression is valid.

Added mass is the result of the displacement flow around an object. When
an object moves through a fluid, the fluid must flow away at the front and
flow towards the rear of the object to accommodate the change in location of
the displacement of the fluid by the object. To induce a displacement flow to
accommodate for the velocity du of the object with respect to the ambient fluid,
an amount of momentum dp must be applied to the fluid. The added mass is
defined as the ratio of this momentum over the velocity of the object.

mau = p (6.5)

In general, the added mass is a tensor. In the case of a sphere, it is a scalar.

ma =
1
2
ρlVb (6.6)
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The symbol Vb denotes the volume of the bubble, and ρl denotes the density
of the ambient fluid. The force on the bubble due to added mass Fm is the
time derivative of the momentum that is transferred onto the bubble from the
ambient fluid.

Fm = − d
dt

(mau) (6.7)

Added mass can give rise to a force when the velocity of the bubble with respect
to the ambient fluid changes, and when the bubble volume changes. The effect
of volume fluctuations on the added mass has been known for quite some time on
theoretical grounds. Recently, this prediction has been verified experimentally
[19]. Added mass can be corrected for the presence of walls in the same way
as the secondary Bjerknes force, as described in the next paragraph. However,
since added mass is also present in the absence of walls, the expression of added
mass in an infinite volume of liquid can be used as an approximation to the
added mass in an inkjet printhead.

Bjerknes forces are the unsteady buoyancy of a bubble. This force is decom-
posed into primary Bjerknes force and secondary Bjerknes force. These forces
are distinguished by the effect that gives rise to the pressure gradient. The
magnitude of the force Fbj on a bubble due to a given pressure gradient ∇P is
given by Archimedes’ law.

Fbj = −Vb∇P (6.8)

The pressure gradient that is not induced directly by the bubble volume oscil-
lations gives rise to primary Bjerknes force. This pressure gradient is obtained
by solving the axisymmetric Navier-Stokes equation numerically. The pressure
gradient that is induced directly by the bubble volume oscillations gives rise to
the secondary Bjerknes force. This pressure gradient is calculated by a three-
dimensional potential flow calculation. The radial flow field that is generated
by a bubble at position xb is characterized by the potential ϕd of a source
singularity, which is modified by the walls.

ϕd(x) =
1

4π (xb − x)2

d
dt
Vb (6.9)

The total potential is the sum of the potential ϕd that is directly generated by
the bubble expansion, and the modification to the potential ϕw by the walls
and the free surfaces.

ϕ = ϕd + ϕw (6.10)

The boundary conditions are imposed on the total potential, so that the bound-
ary conditions on ϕw are inhomogenous. The field equation, Laplace’s equation,
is now solved for the potential by finite differencing, using second order central
differences. The pressure gradient is then obtained from Bernouilli’s equation.

P = P0 − ρ
d
dt
ϕw −

1
2
ρ (∇ϕw)2 (6.11)

By separating the spatial part from the temporal part, a large part of the
expression can be precomputed.

ϕw(x, t) = φw(x)
d
dt
Vb(t) (6.12)
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With this decomposition, the pressure gradient can be written as the product
of a vector field and the time derivatives of the bubble volume.

∇P = −ρ (∇φw)
d2

dt2
Vb −

1
2
ρ
(
∇ (∇φw)2

)( d
dt
Vb

)2

(6.13)

The two spatial terms, both vectors with nonzero radial and axial terms, are
only required at the bubble location. They are calculated at regularly spaced
points prior to the main calculation, and interpolated during each time step for
the location of the bubble to calculate the secondary Bjerknes force.

Lift is the result of the rotation of the velocity field, and the shear. When
a bubble moves through a liquid, the liquid must flow around the bubble. This
flow is a dipole in the potential flow approximation. Changes of this dipole field
give rise to added mass. Since the bubble mass is negligible with respect to
this added mass, the inertia of the bubble is completely contained in this dipole
field. Rotation of the velocity field rotates the dipole field, and thus the bubble
velocity, with the same rate. To maintain the direction of the bubble velocity
with respect to an inertial reference frame, the velocity must be changed back to
its original direction before the rotation. This velocity change requires a force
to balance added mass. This force contributes to lift. The other contributions
to lift arise due to the shedding of vorticity. Lift is characterized by the lift
coefficient cl, which is implicitly defined by the equation for lift.

Fl = clρlVbu×∇× u (6.14)

The competition between the two contributions results in a complex dependence
of the lift coefficient on rotation rate, shear rate, and Reynolds number. The lift
coefficient can even change sign. See van Nierop et al. [14] for a recent detailed
treatment of lift for spherical bubbles, and Bluemink et al. [15] for a detailed
study of lift on solid spheres. When the bubble is no longer spherical, the value
of lift becomes even more complex. Lift is also very sensitive to surfactant
concentration. These two complications have been studied extensively [17, 18].
These complications, and the nonavailability of a suitable expression for the
lift force, require that the importance of lift should be established before this
force is accurately included in the calculation. For now, we neglect lift. This
approximation is checked by assuming a lift coefficient of cl = 1

2 , and estimating
the magnitude of lift with respect to the other forces from the calculated flow
field. If lift turns out to be significant, an accurate expression is required.

Lubrication force Flub is a viscous force between the bubble and the wall.
It is a result of the viscous friction in the layer of liquid between the bubble
and the wall. When the bubble approaches a wall, the liquid in between is
being pushed out, as shown in figure 6.1. This flow is governed by the standoff
distance δ as shown in figure 6.1, the time derivative of the standoff distance, the
bubble radius, and the viscosity. The pressure can be calculated by assuming
lubrication flow and balancing viscous friction with the pressure gradient.

Flub ∼ −
µR4

δ3
en

dδ
dt

(6.15)

The pressure is inversely quadratic in the standoff distance δ, so it is not neces-
sary to derive the prefactor. A small change in standoff distance causes a large
change in lubrication force. Therefore, the only effect of a different prefactor is
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Figure 6.1: A bubble approaches a wall. Liquid flows radially outward from the
region between the bubble and the wall. The standoff distance δ is the distance
from the bubble to the wall.

a minute change in standoff distance. Since an accurate determination of the
standoff distance itself is not the objective of this analysis, we will not derive
the dimensionless prefactor.

The long term evolution of an air bubble in an inkjet printhead is dominated
by the growth of the bubble due to rectified diffusion of gas towards the bub-
ble. During most of its evolution, a bubble in an inkjet printhead is stationary.
However, the bubble growth during the first few actuation cycles after air en-
trapment determines whether the bubble will grow, dissolve, or whether it is
ejected. This growth is calculated in the numerical model. For the calculation
of the bubble growth during these first few cycles, an expression for the gas
exchange between the bubble and the ambient liquid was required. For the con-
sidered case, where the bubble translates and exhibits volume oscillations, such
an expression was not available from the literature. Therefore, an expression
for convection-diffusion from a sphere of a constant radius is modified to take
the effect of the volume oscillations into account in the numerical model.

An approximate expression for gas exchange is derived by modifying an ex-
pression for diffusion and convection from a sphere in steady flow to incorporate
the effect of volume oscillations. The Sherwood number Sh is a measure of the
gas exchange.

Sh =
1

2πRbDm∆C
dN
dt

(6.16)

Feng and Michaelides [11] obtained an expression for the Nusselt number, which
is completely analogous to the Sherwood number, for small but finite Reynolds
numbers Re < 1 and large Péclet numbers Pe > 10 so that the diffusion bound-
ary layer is thin.

Sh = 0.651
√

Pe
(

1.032 +
0.61Re
Re + 21

)
+ 1.60− 0.61Re

Re + 21
(6.17)

The number of moles of molecules in the bubble is denoted N , the mass dif-
fusivity is denoted Dm, and ∆C is the difference in concentration between the
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liquid in contact with the bubble wall and the liquid far away from the bubble.
When the velocity vanishes, the Sherwood number Sh0 = 2 can be calculated
analytically. The expression by Feng and Michaelides is equal to Sh0 = 1.6 for
zero Reynolds number and zero Péclet number, which is fairly close to Sh0 = 2,
the exact value.

When the convective time scale is much smaller than the period of oscillation,
the boundary layer is flushed away much quicker than the oscillation can modify
it. In this limit, the diffusive boundary layer, and thus the mass transport,
approaches the steady state value. Equation 6.17 can be used in this limit
without modification for unsteady effects. The ratio of convective time scale
over the period of oscillation is St, the Strouhal number.

St =
Rω

u
(6.18)

Equation 6.17 is valid in the limit of a small Strouhal number.
In the small Strouhal number limit, rectified diffusion can vanish completely.

When the Reynolds number is small and the Péclet number is large, some terms
in equation 6.17 can be neglected.

Sh = 0.651 · 1.032
√

Pe (6.19)

Insert the definition of the Sherwood number and the Péclet number to obtain
a direct expression for the mass tranfer rate.

Q = 2π
√
Dh (P0 − Pg + Pv) 0.651 · 1.032

√
R3u (6.20)

When added all the forces other than added mass are negligible, the force bal-
ance dictates that added mass is also negligible.

Fm = −2
3
πρl

d
dt
(
R3u

)
= 0⇒ R3u = R3

0u0 (6.21)

The velocity u0 is the velocity of the bubble when its radius is R = R0. Insert
this expression into equation 6.20 to obtain a more convenient expression for
the mass transfer.

Q = 2π
√
Dh (P0 − Pg + Pv) 0.651 · 1.032

√
R3

0u0 (6.22)

This expression shows that the mass tranfer rate is independent of the radius
fluctuation. The effect of the velocity on the mass transfer rate leads to enhanced
dissolution. The growth due to the area effect is countered exactly by this
enhanced dissolution, resulting in exactly the dissolution rate that would occur
if the bubble would exhibit no volume oscillations at all. In the absence of
volume oscillations, a bubble in a saturated or sub-saturated liquid dissolves.

The small Strouhal number limit might be irrelevant for a bubble in an
inkjet printhead, except during the first few droplet formation cycles after its
entrainment. When the bubble radius is R = 10−5 m, the frequency of oscil-
lation is ω = 105 s−1, and the velocity is u = 1 ms−1, the Strouhal number
St = 1 is of order unity. Bubbles are expected to be smaller when they are
entrained, perhaps by an order of magnitude. In the nozzle, the velocity is an
order of magnitude larger. However, when the bubble enters the channel, the
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velocity decreases by two orders of magnitude as a result of the smaller cross-
sectional area. Since the radius eventually increases up to R ∼ 10−4 m, the
bubble is expected to grow to a radius of order R ∼ 10−5 m relatively early in
its evolution. The expected result is that the small Strouhal number limit of
quasisteady gas diffusion is relevant only during the first few droplet formation
cycles after entrainment. Since the equilibrium volume change per cycle is very
small - bubble growth to the diffusive equilibrium takes seconds - only the large
Strouhal number regime is relevant. Unsteady effects will have to be taken into
account.

The expression for convection-diffusion can be modified to take unsteady
effects into account. The Péclet number is large, indicating the presence of a
diffusion boundary layer. When the bubble expands, this boundary layer is
stretched, so that it thins. This thinning increases the concentration gradi-
ent. The magnitude of this effect can be derived from the convection equation.
Consider only the radial velocity and concentration derivative in spherical co-
ordinates.

∂tC + ur∂rC = 0 (6.23)

The objective of this part of the analysis is the radial derivative of the concen-
tration. Therefore, the radial derivative of this equation is taken.

∂r∂tC + ∂rur∂rC =
D

Dt
∂rC + (∂rC) (∂rur) = 0 (6.24)

The velocity field is the result of the bubble expansion.

ur =
1

4πr2

d
dt
Vb =

R2
b

r2

d
dt
Rb (6.25)

The radial derivative of this velocity field can be evaluated at the bubble wall
to obtain the radial derivative at the bubble wall.

∂rur =
−2
Rb

d
dt
Rb (6.26)

With this result, equation 6.24 can be solved for the normal derivative of the
concentration as a function of the bubble radius.

∂rC(Rb)
∂rC(R0)

=
R2
b

R2
0

(6.27)

If the volume fluctuations are fast with respect to the convective timescale, the
constant radius gas flux per surface area can be multiplied with this factor to
obtain the gas flux per surface area for the fluctuating radius. First calculate
the constant radius Sherwood number Ŝh that expresses the same gas flux per
surface area, but with another reference length. This expresses a total gas flux
that is larger by a factor R2

R2
0
, which is the result of the area effect. The factor

is the ratio of surface areas.

Ŝh(Rb) =
Rb
R0

Sh(R0) (6.28)

Now multiply this constant radius Sherwood number by the correction factor
for the thinning of the boundary layer.

Sh(Rb) =
R2
b

R2
0

Ŝh(Rb) =
R3
b

R3
0

Sh(R0) (6.29)
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In the channel, the Strouhal number is expected to be large. This can be
inferred from the magnitude of the velocity fluctuation in the channel. If the
bubble were driven only by primary Bjerknes force and added mass, its velocity
is of the same order of magnitude as the velocity of the liquid. This velocity
is about ũc ∼ 0.1 ms−1, so the convective timescale is about 100 µs, which
is much larger than ω−1 ∼ 1 µs, the time scale of the pressure fluctuations.
In the nozzle near the meniscus, these time scales are equal. However, when
the bubble is that close to the meniscus, the pressure fluctuation is very small,
so that the bubble volume oscillations are small and the correction is small,
so that the inaccuracy in the correction for this case is irrelevant. An as yet
unresolved issue is whether the unsteadiness in the concentration difference is
correctly taken into account. An indication that this is indeed the case is that for
vanishing Péclet numbers, the expression agrees with the result by Fyrillas and
Szeri [21] insofar as that the gas exchange per cycle is a weighted average of the
gas pressure in the bubble with R4

R4
0

as weighing factor. Equation 6.29 specifies a
correction to the Sherwood number for the effect of bubble volume oscillations
that is expected to be valid for all conditions that will be encountered in an
inkjet printhead.

The obtained ODE’s are integrated numerically with a Runge-Kutta method,
in conjuction with the channel acoustics, nozzle flow and volume oscillations that
were described in chapter 5. This yields the position and velocity in cylindrical
coordinates as a function of time, where z = 0 is defined at the end of the nozzle
and the positive direction is towards the channel.

6.3 Theoretical predictions

The order of magnitude of the forces are estimated by analytical methods. These
predictions are used to interpret the results of the numerical model, and to
evaluate the validity of assumptions. First, the magnitude of Bjerknes forces
over viscous friction is estimated. Second, the assuption that lift is small is
checked.

For smaller bubbles, the magnitude of acoustic forces with respect to viscous
drag is smaller. The force on the bubble is Fp = 4

3πR
3∂xP due to the pressure

gradient. The viscous drag can be estimated with Stokes drag Fd = 4πµRu.
The ratio of viscous drag over primary Bjerknes force is large for small bubbles.

Fd
Fp

=
3µ
R2ωρ

(6.30)

Viscous friction dominates primary Bjerknes force for small bubbles R� 10 µm,
where a frequency of ω = 3 · 105 s−1 was assumed.

To estimate the magnitude of secondary Bjerknes force, consider the velocity
field due to a bubble near a flat, infinite wall. The secondary Bjerknes force on
this bubble can be calculated with the method of images. The component of
the velocity field at the bubble due to the image bubble is spherically symmetric
about the location of the image bubble.

un =
π

δ2

d
dt
Vb (6.31)
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In this expression, un is the velocity of the liquid in the normal direction. The
finite size of the bubble is neglected, so that the distance δ is the distance from
the center of the bubble to the wall. The bubble volume Vb is the only time-
dependent quantity in this analysis. Since this estimate is mostly relevant for
small bubbles, assume that the bubble volume fluctuation is of the same order
of magnitude as the bubble volume. The pressure consists of the unsteady
pressure, the component of the pressure that is linear in the velocity amplitude,
and the steady pressure that is quadratic in the velocity amplitude. Far from
the wall, ωδ � u so that the unsteady pressure dominates. This condition can
be inserted into equation 6.31 to obtain an explicit condition on the distance to
the wall.

δ � R
3

√
16
3
π2 ≈ 4R (6.32)

This condition is assumed to be satisfied, so the steady pressure is neglected.

∂nP = −πρ
δ2

d2

dt2
Vb (6.33)

Multiply this pressure gradient with the bubble volume to obtain an order of
magnitude estimate of the ratio of drag over secondary Bjerknes force.

Fd
Fsec

=
4µRuδ2

ρω2V 2
b

(6.34)

Similar to primary Bjerknes force, the ratio of viscous drag force over secondary
Bjerknes force is large for small bubbles. When the bubble volume oscillations
are not limited by the volume of the acoustics, the ratio of viscous drag over
secondary Bjerknes force is proportional to R−5, which is a fairly large power.
Therefore, the transition between dominance of viscous drag to dominance of
secondary Bjerknes force is likely to be very sharp.

R > 5

√
3µuδ2

πρω2
≈ 10 µm⇒ Fd � Fsec (6.35)

In the numerical evaluation of the estimate, the channel radius was used as the
magnitude of the distance to the wall. For bubbles larger than R = 10 µm,
acoustic forces dominate viscous drag.

Lift was neglected, and this assumption is now tested. The importance of
lift can be determined from the calculated velocity field in the nozzle. Assume
a lift coefficient of cl = 1

2 in this order of magnitude estimate. The ratio of lift
over added mass is equal to the ratio of vorticity over angular frequency of the
flow.

Fl
Fam

=
∇× u
ω

(6.36)

The magnitude of this quantity is shown in figure 6.2. Where this quantity is of
order unity or larger, lift is relevant. Lift is relevant in the boundary layer at the
nozzle wall and in a region that protrudes from the nozzle to about z = 50 µm.
Within these regions, the behavior of an air bubble might be different from the
results of the simulation. Outside of these two regions, the model is expected
to be valid.
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Figure 6.2: Contour plot of vorticity over the characteristic frequency of the
flow, which is ω = 5 · 105 s−1, indicating the magnitude of lift over added mass.

6.4 Results of the numerical model

The numerical model is used to study the behavior of a bubble in an inkjet
printhead. First, the flow field in the nozzle is examined. Second, the translation
of a bubble per droplet formation cycle is calculated. Third, the growth of the
bubble is calculated.

The velocity field inside the nozzle where no bubble is present, is calculated
and analysed. The mean velocity field is shown in figure 6.3, in the top figure.
Streamlines are drawn at regular intervals. Since the flow field is axisymetric,
the body of revolution of a streamline about the axis is a streamtube. The
volume flow rate between two neighboring streamtubes is equal. A vortex with
closed streamlines is present in the mean flow. A saddle point is located near
z = 25 µm from the nozzle end. At the bottom of figure 6.3, the Lagrangian
transport field is shown. This it the translation of the fluid particles over one
droplet formation cycle. A fluid particle that starts near the meniscus will end
up at about z = 80 µm after one cycle. In other words, it traverses the entire
nozzle in one cycle. Outside of the nozzle, the translation is about ∆x = 1 µm
per cycle. The saddle point near at z = 25 µm is not present in the Lagrangian
transport field. At the enbd of the nozzle, all transport vectors point towards
the origin. This is an artifact from the method of calculation. Particles that are
ejected from the nozzle, end up at the origin in the simulation, although this
motion is not physical. The differences between the Lagrangian transport field
and the mean flow are the result of the discrete nature of the transport. The
fluid particles move in discrete steps, one step per cycle. If the translation per
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Figure 6.3: The mean velocity without an entrained air bubble (top, arrows and
streamlines) and the Lagrangian transport per droplet formation cycle (bottom,
arrows). The Lagrangian transport was scaled to prevent cluttering of the ar-
rows. The largest translation per cycle is about 80 µm. The mean flow has
a saddle point near z = 25 µ. This saddle point is absent in the Lagrangian
transport. Both the mean flow and the Lagrangian transport field
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cycle is small with respect to the extent of the domain, the mean flow and the
Lagrangian transport are nearly the same. This occurs in the channel. In the
nozzle, the Lagrangian transport is very different from the mean flow.

Very small bubbles, for which viscous drag dominates acoustic forces, behave
almost like fluid particles. The translation of a bubble per cycle closely follows
the Lagrangian transport field. With increasing bubble radius, the difference
between these two fields increases.

To analyse the translation of a bubble per cycle, the translation of the bubble
per droplet formation cycle was calculated at many positions throughout the
nozzle. At these positions, the simulation is run for one 100 µs period, with one
actuation pulse of the same type as in chapter 5. The initial position and the
final position are compared. The results are shown in figures 6.4, 6.5, 6.6, and
6.7, where the translation of a bubble per cycle is shown. These figures were
interpreted to draw (by hand) the corresponding phase portraits, of which the
equilibria and trajectories are shown.

Small bubbles are almost passively convected with the liquid, as shown in
figures 6.4 and 6.5. The translation direction and magnitude of a R = 2 µm

Figure 6.4: Translation of a bubble per acoustic cycle (arrows) and phase por-
trait for a bubble radius of R = 2 µm. The equilibria are indicated by dots and
trajectories are drawn (lines). The bubble is nearly stationary anywhere but
in the nozzle, where the liquid velocity is large. A saddle point is present near
r = 0, z = 110 µm. A spiral is located near r = 15 µm, z = 50 µm, although it
is hard to discern whether it is unstable or stable. It is drawn as a center. The
unstable manifold of the upper saddle point either ends in the limit cycle or it
runs into the meniscus. Near the corner, a stable point and a saddle point are
present.
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Figure 6.5: Translation of a bubble per acoustic cycle for a bubble radius of
R = 2 µm, showing details of the the behavior near the corner. The corner is a
stable point. About 20 µm towards the axis is a saddle point. We expect that
the presence of the stable point is a result of secondary Bjerknes force. This
force is small for such a small bubble, but in the absence of any other forces, it
is still dominant near the corner.

bubble closely resemble the Lagrangian transport field. A center is located near
r = 15 µm, z = 50 µm. A saddle point is present near r = 0, z = 110 µm
with the stable manifolds in the axial direction. The unstable manifold appears
to end in a limit cycle. Near the corner, a stable point and a saddle point
are present. Whether the trajectory that appears to be a limit cycle is indeed
one, or a center or perhaps a stable or unstable spiral, is hard to discern from
the calculated translation map. This is not essential since the bubble doesn’t
exactly follow the phase portrait.

If the bubble were to follow the trajectories of the phase portrait exactly,
a R = 2 µm bubble would move from the meniscus towards the upper saddle
point, and then back towards the meniscus where it would be ejected, or it
might be caught into the limit cycle. However, the bubble evolution can be
chaotic since the bubble trajectory consists of a series of discrete events, the
droplet formation cycles. A bubble does not follow the manifolds of the phase
portrait exactly, but it moves in the direction indicated in the phase portrait
in discrete finite steps. The bubble can therefore cross manifolds. A bubble
can move from the unstable manifold of the upper saddle point towards the
meniscus, and then cross into the closed orbits around the center. The bubble
can also leave these closed orbits by crossing manifolds. The exact evolution
is sensitive to the location of the bubble. Once the bubble has left the basin
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of attraction of the limit cycle, it is ejected. If all bubbles would eventually be
ejected, there would not be a problem with bubbles in inkjet printing. However,
the phase portait changes as the bubble grows.

The phase portrait at a bubble radius of R0 = 5 µm is qualitatively different
from the phase portrait of a R0 = 25 µm bubble, see figure 6.6. Saddle points
are present on the axis at z = 110 µm from the end of the nozzle, and on the
nozzle wall. The unstable manifold from the saddle point on the axis enters a
stable point in the corner after approaching the saddle point on the nozzle wall
closely. Apparently, between a bubble radius of R0 = 2 µm and R0 = 5 µm,
a global bifurcation has occurred. The saddle point at the nozzle wall is now
connected to the basin of attraction of the limit cycle. Whether the limit cycle
is still present is unclear. The limit cycle, if it still is one, now extends beyond
the end of the nozzle.

When a bubble with a radius of R = 10 µm is entrained, its position deter-
mines whether it enters the channel, or whether it is ejected immediately. Close
to the nozzle is a saddle point at the axis and an unstable point at the nozzle
wall. An entrained bubble will always be ejected quickly when it is in the region
that is bounded by the channel wall, the meniscus, and the stable manifold of
this saddle point. A bubble with a radius of R = 10 µm can only remain in
the printhead for more than a few droplet formation cycles if the process of air
entrainment leaves the bubble beyond the saddle point near the nozzle, about
z = 20 µm from the nozzle end. When the bubble is entrained beyond the
saddle point, it first moves into the channel. Two forces act in this direction.
The first is secondary Bjerknes force, which pushes the bubble away from the
free surface of the meniscus. The second force is viscous drag, which pushes the
bubble into the channel since the mean flow along the axis is directed towards
the channel as a result of microstreaming. This is shown in figure 6.3. If the
bubble is entrained beyond the saddle point near the meniscus, it will enter the
channel and approach the saddle point in the channel near z = 110 µm. The
radial position of the bubble will then increase exponentially while the distance
to the saddle point in the axial direction decreases exponentially. The bubble
moves away from the saddle point in the radial direction and moves towards
the corner. This corner is a stable equilibrium position for all bubble volumes
that can be attained, since the only force that is significant in the corner is sec-
ondary Bjerknes force, unless the bubble touches the wall. Secondary Bjerknes
force pushes the bubble towards walls, and thus into the corner. The pressure
gradient vanishes in the corner, so primary Bjerknes force vanishes also. The
liquid velocity vanishes in the corner so viscous drag can not remove the bubble
from the corner. Added mass and history force vanish because the bubble ve-
locity vanishes. The bubble will stay in the corner, kept in place by secondary
Bjerknes force and the lubrication force. In this corner, the bubble grows until
the actuation is stopped.

Besides the translational motion, the bubble also exhibits growth. As the
bubble radius changes, the phase portrait changes. The growth rate of a bubble
depends on its size, as shown in figure 6.8. Very small bubbles are limited in their
volume oscillations by surface tension. As a result, they dissolve. Such small
bubbles are small enough to neglect their influence on the pressure, the two-way
coupling that was treated in chapter 5. Their growth is accurately described
by an analysis in which the bubble is assumed to be embedded in an infinite
volume of liquid. Indeed, such a small-bubble limit to rectified diffusion was
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Figure 6.6: Translation of a bubble per acoustic cycle for a bubble radius of
R0 = 5 µm. The corner is still a stable point and the saddle point on the axis
is also still present. The saddle point that was near the corner at a bubble
radius of R0 = 5 µm has moved along the nozzle wall towards the meniscus.
The unstable manifold from the saddle point on the axis now approaches the
saddle point on the nozzle wall, and leaves the saddle point in the direction of
the corner, while for R0 = 2 µm, it ran towards the limit cycle.

found in previous studies [20], where it was identified with the Blake threshold.
Very large bubbles are limited in their volume oscillations by the finite volume
of the incoming acoustic wave. At the diffusive equilibrium, the ratio of volume
of the acoustic wave over bubble volume is small.

Π7 =
R2
cPa

ρlcωR3
0

= 0.1 (6.37)

This suggests that the finite volume of the acoustic waves in the channel deter-
mines the upper limit of bubble growth.

Since there is no chance of ejecting the bubble when it has grown to R =
10 µm, the time it takes to grow to this size determines the chance of recovery
by ejecting the bubble. For a bubble between R = 1 µm and R = 10 µm, the
growth rate is ∆Vb ∼ 0.05 pl per cycle. A radius of R = 10 µm corresponds
to a volume of Vb = 4 pl, so growth to R = 10 µm takes about 100 actuation
cycles. After a hundred actuation cycles after the air entrainment, the bubble
cannot be ejected anymore.
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Figure 6.7: Translation of a bubble per acoustic cycle for a bubble radius of
R = 10 µm. At z = 40 µm, r = 40 µm is an unstable point. Close to the
meniscus, at z = 18 µm on the axis, there is a saddle point, where the unstable
manifolds run along the axis and the stable manifolds run towards the axis.
Following the unstable manifold further into the nozzle, another saddle point is
encountered at z = 115 µm, in the channel. The stable manifolds of this saddle
point run along the axis and the unstable manifolds run away from the axis.
Following the unstable manifold, a stable point is encountered in the corner.

6.5 Conclusion

The translation was calculated from a force balance. Secondary Bjerknes force,
added mass, history force, and viscous friction are different when the volume
of ambient liquid is made finite. Unlike the other forces, Secondary Bjerknes
force requires the influence of walls and free surfaces to be taken into account,
since it is a direct result of the interaction between the bubble and the walls and
free surfaces. Secondary Bjerknes force is an inviscid force, and can therefore
be obtained from the bubble volume and position, the flow field, and the first
and second derivatives of these quantities. A method to calculate this force was
developed and an implementation in a numerical model was demonstrated for
the complex case of a bubble in an inkjet printhead.

The translation and growth of a bubble in an inkjet printhead were calcu-
lated with a numerical model. This model predicts that when a small bubble
(R = 2 µm) is entrained, it enters a limit cycle near a region where the bubble
trajectory intersects the meniscus. With these small bubbles, there is a chance
that they are ejected during each turn over the limit cycle. As the bubble
grows, the limit cycle disappears at a bubble radius between R0 = 5 µm and
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Figure 6.8: Volume growth per acoustic cycle versus bubble volume for a bubble
in the channel at r = 70 µm and z = 70 µm. The droplet production rate was
20 kHz. The two zero-crossings at Vb = 11 · 10−19m3 and Vb = 244 · 10−15m3

are equilibria in the growth. The equilibrium at Vb = 11 · 10−19m3, which
corresponds to a radius of Rb = 0.6 µm, is an unstable point. The equilibrium
at Vb = 244 ·10−15m3, which corresponds to a radius of Rb = 39 µm, is a stable
point.

R0 = 10 µm. This takes about a hundred actuation cycles. After the limit cycle
has been destroyed, the bubble will always end up in the corner. These larger
bubbles do not enter the channel if they are entrained less than 20 µm from
the end of the nozzle. In this case, they are ejected during the next droplet
formation cycle. When a bubble ends up in the corner, it grows to a radius of
R = 39 µm, where the bubble growth exhibits a stable equilibrium. The growth
is limited by the volume of the acoustic field.

The numerical model that was used in this research contains many approxi-
mations. For instance, the bubble is represented as a particle with point forces,
lift was neglected, and the meniscus dynamics were approximated with the
method that was described in chapter 5. Whether all the approximations are
justified, can only be truly established by an experimental validation. A direct
observation of the path of a bubble in an inkjet printhead is difficult, but it can
be done, as shown in chapter 4. A high-speed image recording of a bubble that
is being entrained into an inkjet printhead is required, at a sufficiently high res-
olution to detect a R = 2 µm bubble. A full direct numerical simulation of the
complete two-phase flow problem provides a more limited, but still valuable val-
idation. In the nozzle, a direct numerical simulation is expected to be the most
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economical approach. Depending on whether the predictions of the presented
numerical model turn out to be correct or not, the predictions of the numerical
model will either provide an interpretation of those empirical observations, or
they indicate which assumptions should be checked.
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Chapter 7

Decoupling of Marangoni
flow translation and
capillary spreading of a
droplet1

When a droplet moves over a completely wetting solid substrate,
whether by gravity, shear stress due to air flow, or inertia, the droplet
spreads. Typically, the order of magnitude of the spreading speed
is coupled to the translational speed. However, when a droplet is
moved by surfactant driven Marangoni flow, the spreading speed and
the translation speed are completely decoupled. We investigate this
unique regime in which the time scale of droplet translation is many
orders of magnitude larger or smaller – depending on the droplet
size – than the spreading speed. We find that the divergence of the
surface velocity in thin film Marangoni flow vanishes. As examples
of how these results make flows tractable by analytical methods, the
translation of a ridge and the development of a fingering instability
are analyzed. The analysis of the fingering instability is corroborated
by an experimental observation of the fingering instability.

7.1 Introduction

Marangoni flow is flow driven by a surface tension gradient, also known as
“Marangoni stress”. The spatial variation of the surface tension can arise due
to temperature differences or due to differences in surfactant concentration.
This paper focuses on Marangoni flow due to surfactants.

Thin film Marangoni flow is important in many technical and biological
applications. Surfactants are commonly used to stabilize foams, where the Ma-
rangoni stress keeps the liquid films from draining. Marangoni Stress keeps the

1This chapter will evolve towards a manuscript to be submitted to Phys. Rev. E: Roger
Jeurissen, Anette Hosoi, Gareth McKinley, Decoupling of Marangoni flow translation and
capillary spreading of a droplet.
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alveoli in our lungs from collapsing ( [1], page 405). In lab on a chip applica-
tions, liquid needs to be transported. Marangoni flow can be a useful transport
method in lab-on-a-chip applications [2].

Marangoni flow can also be a problem. In inkjet printing, Marangoni stress
is one of the driving forces of flow towards the nozzles, along with shear stress
of air flow [3]. This flow transports dirt and other contaminants towards the
nozzles. This dirt may cause air bubble entrainment which in turn causes nozzle
failure. Nozzle failure is the limiting factor for performance. The relevance for
inkjet printing motivated this research.

An excellent review on thin film flows is written by Oron, Davis, and Bankoff
[4]. They discuss investigations of droplet spreading for the cases of constant
surface tension, thermocapillary flow, and an evaporating droplet. For the com-
plete wetting case, only spreading at constant surface tension is discussed. The
effect of surfactants on the evolution of a film is discussed in this review for a
film on a substrate to which a surfactant rich droplet is added. Surfactants can
be used to promote spreading of a droplet [5, 6]. However, the effect of Maran-
goni stress on the spreading of a droplet that completely wets the substrate,
without the local addition of surfactant, has not been investigated.

In this research, a droplet that is translated by Marangoni flow is studied ex-
perimentally and analytically. With the aid of the obtained results, complicated
flows become tractable by analytical methods. This is demonstrated by ana-
lyzing a fingering instability that develops at the leading edge of a translating
ridge. Finally, the predicted evolution is compared to experimental data.

A stationary droplet on a completely wetting substrate is a slow transient
state. On a completely wetting substrate, a droplet will spread until it covers
the entire surface. The spreading is described by Tanner’s law [7], which follows
from balancing Laplace pressure and viscous friction.

T ∼ µ

V 3
d σ0

L10 (7.1)

In this equation, T is the time scale, µ is the dynamic viscosity, Vd is the droplet
volume, σ0 is the surface tension, and L is the horiontal length scale, the droplet
radius. The time scale is proportional to the horizontal length scale to a high
power. After a small period of time after droplet deposition, the horizontal
length scale is essentially constant unless forces other than Laplace pressure are
relevant.

On a completely wetting substrate, droplet translation by a uniform body
force or a uniform surface traction induces spreading of the same order of mag-
nitude as the translation. These cases are common. Gravity is a uniform body
force that translates a droplet over an inclined plane. The shear stress is nearly
constant over a thin droplet under a laminar air flow. The case of a uniform
body force is described by Burgers’ equation in the square of the layer thickness.
The case of a uniform surface traction is governed by Burgers’ equation in the
layer thickness. In both cases, the velocity is small at the trailing edge while
a shock forms at the leading edge, as shown in figure 7.1. The leading edge is
much faster then the trailing edge so a droplet is not truly translated by these
forces, it is smeared out.
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Figure 7.1: Two 2-dimensional droplets, one is moved by Marangoni flow (top),
and the other (bottom) is moved by a constant shear stress at the surface. Six
instants in time are shown, from 0 to 10 times the horizontal length scale over
velocity.

7.2 Experimental observation of a translating
droplet

Whether Marangoni flow shares the property of smearing out the droplets that
it translates, is investigated experimentally on an inkjet printhead. The relevant
part of the print head is shown in figure 7.2. This setup is described in de Jong
et al. [8]. The nozzle plate is made out of nickel, and the ink is a wax with a
melting point of about 80 degrees Celsius. All experiments were performed at a
temperature of 130 degrees Celsius, well above the melting point of the ink. At
this temperature, the ink is Newtonian with a viscosity of µ = 0.01 Nm−2s. The
surface tension is σ0 = 0.025 Nm−1. The investigated Marangoni flow occurs
at the nozzle plate, on the outside of the print head.

Marangoni flow towards any nozzle can be invoked. This phenomenon is
described and analysed by de Jong et al. [8]. The hypothesis that the observed
flow was surfactant concentration driven Marangoni flow, is supported by in-
duction. This hypothesis was tested by replacing the ink with silicone oil. After
this intervention, no flow was observed anymore. An incomplete explanation
of the mechanism that leads to this Marangoni flow is presented by de Jong et
al. Over most of the length of each channel, the cross-section can be changed
slightly by a piezo actuator. This causes acoustic waves in the channel which set
the ink in the nozzle that is connected to the channel in motion. This motion
increases the surface tension of the ink on the nozzle plate in the direct vicinity
the nozzle. The change in surface tension leads to Marangoni flow in the precur-
sor film and ultimately to Marangoni flow in the band of ink at the center of the
nozzle plate. Droplets on the precursor film are also moved by the Marangoni
stress. This was observed in the same investigation, but not mentioned in [8].

A droplet that is moved over the nozzle plate by Marangoni flow is observed.
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Figure 7.2: The experimental setup is an inkjet print head. The observed flows
occur on the outside of the print head, in a thin layer of ink on the nozzle plate.
Each nozzle is backed by a channel. Through the precursor film, the central
wetting band and droplets (not shown) are connected to the nozzle.

The system is illuminated by a LED that emits light at a wavelength of λ =
545 nm. The index of refraction of the ink is n = 1.3, so the thickness is
105 nm at the first dark fringe, 314 nm at the second dark fringe, and 524 nm
at the third dark fringe. Six images of the experiment are shown in figure
7.3. When none of the nozzles is actuated, the droplet moves to the center of
the nozzle plate, upwards in the images. A similar flow towards the center of
the nozzle plate has been observed by de Jong et al. [8], but no explanation
was given. This flow is subject to the same conditions as the flow towards the
nozzle, and vanishes when the ink is replaced by silicone oil, as in the Marangoni
flow towards the nozzle. We therefore assume that this flow towards the center
of the nozzle plate is also surfactant driven Marangoni flow.

When one of the nozzles is actuated, the droplet moves towards this nozzle.
The nozzle in the bottom center of the image is actuated first. Second, the
nozzle in the lower right corner is actuated, and finally the nozzle in the bottom
left corner is actuated. The droplet traverses a total distance of 500 µm during
the part of the experiment that is shown in figure 7.3. Careful examination
reveals that the droplet spreads ever so slightly. The last remnant of the third
dark fringe in the first image, the small dark dot in the center of the droplet,
disappears over the course of the experiment. The second dark fringe in the first
image closes upon itself during the experiment, until an elongated dark spot in
the last image remains. Apparently, the height decreases. From continuity, the
decrease in height requires an increase in horizontal extent. The droplet must
have spread.

By manually selecting the lowest dark fringe in the images, the surface area
of the droplet can be determined. This procedure was applied to 22 of the
frames at equidistant times. A horizontal length scale can be determined from
the obtained surface area. The chosen length scale is the radius of a circle with
the same area as the droplet. This effective radius is plotted in figure 7.4, along
with the evolution of the radius of a droplet according to Tanner’s law. The
error margin is the thickness of the lowest dark fringe in the images, about two
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Figure 7.3: Six frames from a video recording of a droplet on a nickel nozzle
plate are shown. The droplet is moved about by Marangoni flow. Actuated
nozzles are marked by a plus (+) sign. The path of the top of the droplet
is drawn in white when a nozzle is actuated, and in black when none of the
nozzles are actuated. The length of the droplet path is about 500 µm.The
droplet does spread somewhat, as the highest dark fringe disappears over the
course of the experiment. The height decreases. Therefore, the surface area
must have increased.

pixels thick. The measured droplet radius is consistent with Tanner’s law as
show in figure 7.4, although the accuracy of the experiment is insufficient to
distinguish between spreading according to Tanner’s law, or no spreading at all.
The translation distance over the course of the experiment is 500 µm, while
the droplet has only spread about 10 µm, much less then the translation. The
translation does not cause the droplet to spread.

7.3 Analysis

The droplet is very thin with respect to its horizontal extent. Thin film Maran-
goni flow is governed by liquid and surfactant transport, and lubrication flow.
Assume that most of the surfactant is located at the surface, so the surfactant
is insoluble. In other words, the layer thickness is much smaller than the ratio
of surface concentration over bulk concentration. The transport equations for
liquid and surfactant are

∂t̆h̆ = −∇ ·
(
h̆ŭ
)

∂t̆c̆ = −∇ · (2c̆ŭ) (7.2)

where ŭ is the depth averaged velocity, h̆ is the layer thickness, σ̆ is the surface
tension, and c̆ is the surface concentration of surfactant, the number of surfac-
tant molecules per unit surface area. Dimensional variables are indicated by ·̆
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Figure 7.4: The effective radius of the droplet in figure 7.3 (circles with error
bars) and the droplet radius based on Tanner’s law (dashed) are plotted versus
time. The droplet spreads 10 µm during the experiment.

in this paper. If the Reynolds number and the slope are both small, the flow is
approximated closely by lubrication flow.

ŭ =
1

2µ
h̆∇σ̆ (7.3)

The equation of state σ̆(c̆) of the surfactant, the relation between the surfac-
tant concentration and the surface tension, is a material parameter. Although
this material parameter is unknown, the order of magnitude of the derivative
with respect to concentration can be estimated. The surfactant concentration is
assumed large enough to significantly change the surface tension. This change
in surface tension is of order ∆σ̆ ∼ −σ0 where the minus sign indicates that
when surfactant is present, the surface tension is lower than in the absence of
surfactant. Divide this change in surface tension by the surfactant concentration
that led to this change, to obtain an estimate of the derivative of the equation
of state.

σ̆′ ∼ −σ0

c0
(7.4)

where c0 is a reference concentration of the same order of magnitude as the
concentrations that occur in the flow, for instance the concentration averaged
over the droplet at the start of the calculation or experiment. The derivative
of the equation of state is negative because the surface tension decreases when
surfactant is adsorbed to the surface.



7.3. ANALYSIS 117

The equations that govern thin layer Marangoni flow in the lubrication ap-
proximation can be nondimensionalized with

σ =
σ̆

σ0
(7.5)

h =
h̆

h0
(7.6)

u =
ŭ

u0
(7.7)

t =
t̆

T
(7.8)

x =
x̆

L
(7.9)

c =
c̆

c0
(7.10)

where u0 is the velocity of translation, T = L
u0

is the convective time scale based
on the translation velocity, L is a horizontal length scale such as the droplet
diameter, x̆ denotes horizontal position, and h0 is a vertical length scale that
scales with the layer thickness or the droplet height. The governing equations
are nondimensionalized as defined above.

∂th = −∇ · (hu) (7.11)
∂tc = −∇ · (2cu) (7.12)

u =
Σσ′

2Ca
h∇c (7.13)

where Σ = h0
L is the aspect ratio of the droplet and Ca = µu0

σ0
is the Capillary

number. Note that the derivative of the dimensionless equation of state σ′ is
now a negative number of order unity. We call the ratio Mg = Σσ′

Ca ≈ −500 the
Marangoni number because it is a measure of the ratio of Marangoni stress and
viscous friction. The Marangoni number is large in this case. This fact is used
to indentify which effects can be neglected, in order to simplify the analysis.

To identify negligible terms, insert equation 7.13 in equation 7.12 to obtain
a nonlinear diffusion equation for the surfactant concentration.

∂tc = −Mg∇ · (ch∇c) (7.14)

The chain rule was applied to the nondimensional equation of state. Note that
the diffusion coefficient κ = −c hMg is positive definite and large. As a result,
the governing set of equations is stiff. The diffusion time scale κ−1 ≈ 1

500
is very small with respect to the time scale of fluctuations of the boundary
conditions, the convective time scale. For numerical solution of differential
equations, stiffness is a problem that can sometimes be dealt with. Here, we use
it to simplify the analysis, turning it into an advantage. Key to this method is
to recognize that on the fast time scale κ−1 ≈ 1

500 , the boundary conditions are
essentially constant in time.

Decompose the concentration into three different components, each with a
different spatial and temporal behavior.

c = c0(t) + c̃(x, t) + c̄(x, t) (7.15)
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The first is the spatial average of the slow concentration c0, which depends
only on time. The second component is the spatial fluctuation c̃ of the slow
concentration. This quantity depends on both space and time, but is governed
by an elliptic PDE in the spatial dimensions. The time dependence enters only
through the boundary conditions. The third component is the fast concentration
fluctuation c̄, which decays exponentially with a time scale of κ−1.

The slow concentration ĉ is defined as the steady state solution to equation
7.14 that satisfies the boundary conditions.

−Mg∇ · (ĉh∇ĉ) = 0 (7.16)

Decompose the slow concentration ĉ = c0 + c̃ into the spatial average and the
spatial fluctuation.

−Mg∇ · ((c0 + c̃)h∇c̃) = 0 (7.17)

The average of the slow surface concentration of surfactant is defined as

c0 =
1
A

∫∫
Ω

ĉda (7.18)

where Ω is the investigated area, which is the droplet in this case. Rewrite
equation 7.17 to obtain the divergence of the accompanying velocity field.

c0∇ · ũ−Mg∇ · (c̃h∇c̃) = 0 (7.19)

where ũ is the velocity field due to c̃, the slow velocity field fluctuation. This
equation can be used to estimate the order of magnitude of the divergence of
the velocity due to the slow concentration field.

The surfactant concentration is of order c0 in the entire region of flow, not
just over the droplet. If the droplet is small with respect to the distance to
sources or sinks of surfactant, the spatial fluctuation of the surfactant concen-
tration is much smaller than the average of the slow concentration.

c̃

c0
∼ ε� 1 (7.20)

Since c0 and h are order 1 quantities and c̃ ∼ ε, the divergence of the slow
velocity fluctuation is of order

∇ · ũ ∼ Mgε2 (7.21)

while
ũ ∼ Mgε (7.22)

which is much larger. The slow velocity field is solenoidal.
To obtain the fast concentration field, decompose equation 7.14.

∂t(c0 + c̃+ c̄) = −Mg∇ · ((c0 + c̃+ c̄)h∇(c0 + c̃+ c̄)) (7.23)

Neglect higher order terms in the fluctuations, retaining only first order terms.
Also use the definition of the slow fluctuation and set spatial derivatives of c0
to zero to obtain a simplified expression.

∂t(c0 + c̃+ c̄) = −Mg∇ · (c0h∇(c̄)) (7.24)
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Since c0 � c̃, the time derivative of the slow fluctuation can be neglected.

∂t(c0 + c̄) = −Mg∇ · (c0h∇(c̄)) (7.25)

The average concentration fluctuates on a time scale equal to the convective time
scale. The time scale of the fast fluctuation κ−1, the diffusive time scale, is much
smaller. Since the slow concentration field satisfies the boundary conditions by
definition, the fast fluctuation is subject to homogenous boundary conditions.
On a small time scale of κ−1, the fast fluctuation decays to the steady state
solution of equation 7.25, treating ∂tc0 as a constant.

1
2c0

∂tc0 = ∇ · ū (7.26)

In a steady ambient concentration field, the time derivative of c0 is the result of
the droplet traversing the concentration field. The gradient of this concentration
field is of order ε, and so is the time derivative of c0 since the traversal time
is used as the time scale. The divergence of ū is of order ε, while the total
velocity field is of order Mgε which is much larger. The other component of the
divergence is of order Mgε2, which is also much smaller than the total velocity
field. The divergence of the velocity field is small. In other words, the flow is
solenoidal.

∇ · u ≈ 0 (7.27)

This result is subject to the following conditions.

• constant ambient surfactant concentration

• the aspect ratio is much larger than the capillary number

• the relative variation of the surfactant concentration is small

This is a result of the magnitude of the decrease of the surface tension with
increasing surfactant concentration. If there is a region on the surface with a
net outflow of liquid, so that there is divergence in that region, there is also
a net outflow of surfactant. This decreases the surfactant concentration, and
thus increases the surface tension in that region. This higher surface tension
causes Marangoni flow towards the region, reducing the divergence. If the given
conditions are met, this negative feedback effect is so large that it prevents any
significant divergence.

When∇h×∇c = 0, the flow is not only solenoidal, but also two-dimensionally
irrotational, i.e., the rotation of the depth averaged velocity field vanishes. This
condition is met in the case of constant layer thickness. To derive this, take the
curl of the velocity.

∇× u = 2Mg∇× h∇σ = 2Mg(∇h)× (∇σ) (7.28)

If the rotation vanishes too, then the concentration field is governed by Laplace’s
equation

∇2c = 0 (7.29)

so that the methods for calculating potential flow can be applied to analyze
Marangoni flow of a uniform thin layer.
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By Gauss’s divergence theorem, a solenoidal flow field preserves the area of
a droplet. The boundary of the droplet moves with the depth averaged velocity
field. Integrate the divergence over the droplet and apply Gauss’ divergence
theorem to obtain the rate of change of the surface area of the droplet.

dA
dt

=
∮
∂Ω

un ds =
∫∫

Ω

∇ · u da (7.30)

Since the divergence vanishes everywhere, so does its integral. Marangoni
flow does not change the surface area of a droplet that it translates unless
one of the conditions for a solenoidal velocity field is violated. Thus, droplets
are not spread due to translation by Marangoni flow.

7.4 Validation and demonstration of the solenoidal
theory

If a Marangoni flow is solenoidal, this greatly simplifies analysis [9] of such flows.
This is now demonstrated. A ridge along the x2 direction that is transported by
Marangoni flow in the x1 direction is analyzed. First, we show that the vanish-
ing divergence of the depth-averaged velocity field allows a complete analytical
treatment of a small ridge. Second, the fingering instability at the leading edge
of a large ridge is analyzed. The calculated results are then compared with
experimental data, providing an extra test of the developed theory.

Consider a ridge that has a cross sectional profile that is constant in the
x2 direction. This ridge is transported by Marangoni flow in the x1 direction.
The Marangoni stress is caused by a concentration gradient of an insoluble
surfactant. The horizontal extent of the ridge is small with respect to both
h0
Ca and C

∂nC
, so that this flow satisfies the conditions for solenoidal Marangoni

flow. The two-dimensional divergence of the depth averaged velocity vanishes.
By symmetry, the depth averaged velocity in the x2 direction u2 vanishes also.

0 = ∇ · u = ∂2u2 + ∂1u1 = ∂1u1 (7.31)

Integrate to obtain the velocity field in the x1 direction. The depth averaged
velocity far away from the ridge is used as the velocity scale.

u1 = 1 (7.32)

In a small ridge, the depth averaged velocity is constant everywhere.
In a reference frame that moves with the ridge, the depth averaged velocity

of the ink vanishes. In this reference frame, the substrate at a vertical position
of y = 0 moves in the −x1 direction with a velocity v1(x1, x2, 0) = −1, where
v(x1, x2, y) is the 3-dimensional velocity field. The horizontal velocity at the
liquid-air interface at y = h(x1) is v1(x1, x2, h(x1)) = 1, and by continuity of
shear stress, assuming small slopes, the horizontal velocity in between is

v1(x1, y) = 2
y

h(x1)
− 1 (7.33)

Since the velocity is a derivative of the stream function, the stream function
is determined by the velocity field up to an arbitrary additive constant. The
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stream function can be arbitrarily set to zero at the substrate. Integrate in the
vertical direction to obtain the stream function in the entire flow domain.

ψ(x1, y) =
y2

h(x1)
− y (7.34)

Contours of the stream function are streamlines. They are plotted in figure
7.5 for a height profile of h(x1) = ε +

(
1 + x1

2
)−1 where ε is the small layer

thickness at infinity, far away from the ridge. Many streamlines are closed.

Figure 7.5: A cross-sectional area of a narrow ridge with streamlines. Most, but
not all streamlines are closed. The thicknesses of the layers above and below the
recirculation zone are a quarter of the layer thickness far away from the ridge.
They are too small to plot individually.

A small ridge contains a recirculation zone, showing that not just the shape,
but also the liquid itself is transported. The boundary of this recirculation zone
is a streamline. The value of the streamfunction ψr at this streamline is the
minimum of the streamfunction at infinity.

dψ
dy

= 2
y

h(x1)
− 1 (7.35)

Find the minimum.

dψ
dy

= 0 ⇒ yr
h(x1)

− 1
2

= 0 ⇒ yr =
ε

2
(7.36)

Find the value at the minimum.

ψr = −ε
4

(7.37)

At the thickest point of the ridge, the layer of ink above and below the recircu-
lation zone has a thickness of 1

4ε. This is very thin indeed. Most of the ridge
consists of recirculation zone.
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A large wide ridge might not satisfy Mg � 1, but small parts such as the
leading and trailing edges, do. The analysis of a large ridge that is presented in
this paper focusses on the leading and trailing edges.

A leading edge is known to exhibit a fingering instability. In the partial
wetting regime, the stability of a contact line that recedes over a vertical plate
has been treated extensively [10]. For Marangoni flow in the complete wetting
regime, stability of the shape of a leading or trailing edge is less thoroughly
understood. The fingering instability was calculated numerically by [11] for
Marangoni flow of insoluble surfactant, by [12] for Marangoni flow of soluble
surfactant, and by [13] for Marangoni flow of soluble surfactant at concentra-
tions above the critical micelle concentration using direct numerical simulations.
In the case of insoluble surfactant, they concluded that the wavenumber of
the fastest growing disturbance is selected by competition between Marangoni
stress, surface diffusion and Laplace pressure. Marangoni stress favors small
wavelength disturbances while Laplace pressure and surface diffusion provide a
small wavelength cutoff. They showed that the disparity in thickness between
the surfactant rich layer and the liquid film over which it spreads is essential.

Since the ambient layer thickness is constant, the flow in the ambient layer
can be calculated with potential theory. The gradient of the layer thickness
vanishes, so the cross product of the layer thickness gradient and the surfactant
concentration gradient vanishes too. According to equation 7.28, this implies
that the depth averaged velocity field is two-dimensionally irrotational. An
irrotational vector field can be written as the gradient of a scalar potential. In
thin film Marangoni flow the potential is 1

2Mgδγ, where γ is the only variable.
When this vector field is also solenoidal, the field equation for this potential is
Laplace’s equation.

At the edges of the ridge, the layer thickness becomes much larger than the
ambient layer thickness over a small distance. Where the layer thickness is much
larger than the ambient layer thickness, the surfactant concentration equilibrates
at a much higher rate than in the ambient layer. The variation in surfactant
concentration is small with respect to the variation in the ambient layer. In the
calculation of the flow in the ambient layer, the surfactant concentration in the
ridge can be held constant. This imposes a Dirichlet boundary condition on the
surfactant concentration in the ambient layer at the edge of the ridge.

The fingering instability is an instability in the velocity of the edge of the
ridge. The velocity of this edge is proportional to the gradient of the surfactant
concentration, so the objective is to obtain the normal derivative of the surfac-
tant concentration by solving the field equation, Laplace’s equation, subject to
a Dirichlet boundary condition at the edge. This instability is analogous to the
Saffman-Taylor instability, since the same governing equation is solved, subject
to the same boundary conditions.

The initial condition is a straight front at x1 = xf that is perturbed slightly,
as shown in figure 7.6. The amplitude xa � k−1 of this disturbance is small with
respect to the wavelength. The governing equations are nondimensionalized
with the film thickness hl as length scale, the undisturbed velocity u0 as velocity
scale, and the surface tension at the ridge as force scale.

xf |t=0 = xa sin(kx2) (7.38)
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Figure 7.6: The edge of the ridge is shown, meandering along the x2 direction
due to the disturbance of the edge position. The ridge is located on the −x1

side of the edge. The vertical scale is exaggerated for clarity. Since the flow
in the ridge is much faster than the flow in the thin layer, the pressure in the
ridge is constant. Therefore, the curvature of the free surface must vanish in
the ridge. As a result, the slope Θ0 − ∆Θ at the tips of the fingers is smaller
than the slope Θ0 + ∆Θ between the fingers.

During the evolution of the system, the front is located at

xf (x2, t) = xa(t) sin(kx2) + t (7.39)

At this front, the fluctuation of the surface tension σ̃ is set to zero arbitrarily,
so the surface tension at the ridge is chosen as the reference concentration.

σ̃(xf , x2) = 0 (7.40)

For small values of the amplitude xa, a boundary condition at x1 = t can be
derived. Take the Taylor series expansion of the surface tension in the distance
to the edge.

σ̃(xf , x2) = σ̃(0, x2) + xa sin(kx2)∂1σ̃|x1=0 +O(x2
a) = 0 (7.41)

The undisturbed surface tension, where the disturbance amplitude is set to zero,
gives rise to a uniform velocity field.

σ̃|xa=0 = −2Ca
h

(x1 − t) (7.42)
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The disturbance of the surface tension σa due to the instability is defined by

σ̃ = −2Ca
h

(x1 − t) + σa (7.43)

Since this disturbance vanishes for zero disturbance amplitude, it is at least
of first order in xa, while the gradient of the undisturbed surface tension is of
zeroth order. The surface tension gradient is dominated by the gradient of the
undisturbed surface tension for small disturbance amplitudes. Insert in equation
7.41 to obtain a boundary condition at x1 = t on the disturbance of the surface
tension.

σa(x1, x2, t)|x1=u0t = xa sin(kx2)
2Ca
h

+O(x2
a) (7.44)

In cartesian coordinates, Laplace’s equation is separable.

σa = X1(x1 − t)X2(x2) (7.45)

Retain only first order terms in xa, neglecting higher order terms, and solve
Laplace’s equation.

X1(x1) = −xa
2Ca
h
ekx1 (7.46)

X2(x2) = sin(kx2) (7.47)

The spatial frequency k must be negative to satisfy the boundary condition
at x1 ↑ ∞. The velocity of the front is related to the spatial derivative of the
surface tension through

u =
1

2Ca
h∇σ (7.48)

Insert the derivative of the obtained surface tension field with respect to x1 to
obtain an ODE for the growth of the disturbance.

d
dt
xa = −xak (7.49)

The solution of this ODE is

xa(t) = xa(0) e−kt (7.50)

Equation 7.50 describes the small amplitude behavior of a disturbance of spatial
frequency k in the front position, where k is negative.

The leading edge of a ridge is unstable to perturbations of the front position,
while the trailing edge is stable, as depicted in figure 7.7. To derive this result
from the obtained expression for the evolution of the disturbance amplitude,
equation 7.50, recall that k is negative. The exponent is positive. Time is
nondimensionalized with

T =
h0

u0
(7.51)

which is positive for positive u0. This corresponds to a thick layer that overflows
a thinner layer with increasing dimensional time, so the boundary between the
two regions is the leading edge of a ridge. At the trailing edge, u0 is negative,
so disturbances decay with increasing dimensional time. The trailing edge will
become ever smoother, while at the leading edge, a fingering instability develops.
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Figure 7.7: The leading edge, where the velocity of the front is towards the
thinner ink layer, is unstable with respect to the fingering instability. A trailing
edge is stable.

By including Laplace pressure in the analysis, the order of magnitude of the
spatial frequency of the most unstable perturbation can be estimated, assuming
negligible surface diffusion. A small distance after the edge of the ridge, the slope
in the x1 direction is nearly constant. This slope is recovered over a distance of
∆x, as shown in figure 7.8. When the slope is recovered, it is nearly constant
on a length scale of ∆x. The Laplace pressure results from the curvature in the
x1 direction.

P̆l ∼
σ0θ

∆x̆
(7.52)

Over the region where the curvature goes to zero, the Laplace pressure decreases
to zero. This Laplace pressure gradient leads to a parabolic flow profile. The
viscous stress at the top is balanced by Marangoni stress as illustrated in figure
7.9. Half of the force due to Laplace pressure is absorbed by the substrate,
and the other half is absorbed by Marangoni stress. The difference in surface
tension between the location of maximum curvature and the thin layer, is half
the Laplace pressure integrated over the layer thickness.

σ̆l ∼ σ̆c −
σ0θh̆l
∆x̆

(7.53)

where σ̆l is the surface tension in the thin layer, close to the edge of the ridge,
and σ̆c is the surface tension in the cusp, where the curvature is greatest. h̆l is
the layer thickness in the thin layer. The same argument yields an expression
for the surface tension difference on the other side.

σ̆r ∼ σ̆c −
σ0θh̆r

∆x̆
(7.54)

where σ̆r is the surface tension in the ridge near the edge, and h̆r is the layer
thickness in the ridge, where the slope is recovered.

h̆r ∼ h̆l +
1
2

∆x̆θ (7.55)

Combining equations 7.53, 7.54, and 7.55, an expression is obtained for the
difference in surface tension over the edge of the ridge.

σ̆l − σ̆r ∼
1
2
σ0θ

2 (7.56)
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Figure 7.8: The front (thick dashed line) and concentration contours. The
contours are close together at the tips of the fingers, indicating a large concen-
tration gradient, while they are further apart in between the fingers, indicating
a small concentration gradient. In the inset, a cut along the line from A to A′ is
sketched. The thin layer is flat, with the free surface parallel to the substrate.
In the thick region, the slope is nearly constant. The slope is recovered over a
region of length ∆x. The height is exaggerated for clarity.

This equation is nondimensionalized, taking the surface tension in the ridge as
σ0, the reference surface tension.

σl − σr ∼
1
2
θ2 (7.57)

The change in surface tension is independent of the distance over which the
slope is recovered. This is convenient because this distance is hard to measure
or calculate. To obtain the slope, consider Laplace pressure in the ridge. Laplace
pressure variation over the ridge is small, because the thickness of the ridge is
much larger than the thin layer. This causes fluctuations to equilibrate much
faster in the ridge than in the thin layer. The curvature of the surface must
therefore vanish. In limit of a layer thickness that is small with respect to
the horizontal length scales, the curvature can be approximated by the two-
dimensional Laplacian of the layer thickness. The layer thickness in the ridge
satisfies Laplace’s equation. The boundary condition at negative infinity on the
layer thickness is a constant slope. The boundary condition at the edge of the
ridge is a constant layer thickness. The solution to this boundary value problem
was already obtained in the calculation of the surface tension in the thin layer.

h(x1, x2) = 1 + xaθ0e
k(t−x1) sin(kx2) + θ0(t− x1) (7.58)

The fluctuation of the slope is the derivative in the x1 direction. The fluctuation
of the slope at the edge of the ridge θ̃(x2) determines the influence of Laplace
pressure on the boundary condition on the surface tension.

θ̃(x2) = xaθ0k sin(kx2) (7.59)
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Figure 7.9: In the cusp, the Laplace pressure is lowest. Where the slope is
constant, Laplace pressure vanishes. In between, there is a pressure gradient.
Since Marangoni stress resists surface compression, the air-ink interface is nearly
stationary. In the bulk, the pressure gradient is balanced by viscous stress. At
the interface, viscous stress is balanced by Marangoni stress. The pressure
gradient results in a larger Marangoni stress where the layer thickness is larger.
This difference in Marangoni stress magnitude between the two sides of the cusp
results in a net Marangoni stress acting on the cusp, and thus a difference in
surface tension between the ridge and the ink layer.

The obtained slope is inserted into equation 7.57 to obtain the surface tension
boundary condition at the edge of the ridge. The surface tension in the ridge
σr = 1 is constant.

σl ∼
1
2

(θ0 + xaθ0k sin(kx2))2 + 1 (7.60)

This equation can be linearized in xa.

σl ∼
1
2
θ2

0 + xaθ
2
0k sin(kx2) + 1 (7.61)

The Laplace equation for the surface tension in the thin layer is solved, subject
to this boundary condition and the boundary condition at infinity, as before.
From this solution, the Marangoni stress in the x1 direction due to Laplace
pressure can be determined. Only the part that leads to growth or decay of the
disturbance in the position of the edge is retained.

∂̄ 1σ̃ ∼ xaθ2
0k

2 sin(kx2) (7.62)

Inserting this equation into the governing equation for the velocity yields the
edge velocity u1,L due to Laplace pressure.

u1,L ∼
1

2Ca
hlxaθ

2
0k

2 sin(kx2) (7.63)

To complete the analysis, add the contribution of Laplace pressure to the
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front velocity due to Marangoni stress alone.

d
dt
xa ∼ −xa

(
k +

k2θ2
0hl

2Ca

)
(7.64)

The maximum growth rate occurs at a spatial frequency of

kmax ∼ −
Ca
θ0hl

=
µu0

θ0h0σ0
(7.65)

Note that hl = 1 since the thickness of the thin layer was taken as the length
scale. High spatial frequencies decay.

k � − 2Ca
θ0hl

⇒ d
dt
xa < 0 (7.66)

According to equation 7.65, the maximum growth rate of the perturbation oc-
curs at intermediate spatial frequencies.

Figure 7.10: A view of the nozzle plate, 1 second after wiping with a clean cloth.
Near the lower edge of the image, the nozzles are visible as small dark dots. The
nozzles are in a fairly smooth, very thin (less then a quarter wavelength, about
125 nm) layer of ink. Above this thin layer is a ridge, a thicker band of ink. This
ridge moves towards the center of the nozzle plate, upwards in this image, with
a velocity of 10−3 ms−1. At the top of the image is a region with a thin liquid
layer that is not yet disturbed by the incoming ridge. Note that the fingering
instability only develops at the leading edge of the ridge. The trailing edge is
smooth. Both observations are predicted by the presented solenoidal Marangoni
flow theory. The wavelength of the fingering instability is between λ = 100 µm
and λ = 300 µm, in accordance with the developed theory.

Experimentally, a large ridge was created by wiping the nozzle plate with
a cloth. Since the nozzle plate is completely wetted by the ink, a thin layer is
left behind. The surface tension is lower at the sides of the nozzle plate. As a
result, the nozzle plate dries, not unlike the process of Marangoni drying as used
in the semiconductor industry [14]. The phenomenon is shown in figure 7.10,
about one second after wiping. At the bottom of the image, a flat region exists
where the layer thickness is very small. This is where the nozzles are located.
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The horizontal length scale is much larger then the radius of the droplet treated
earlier. The assumption that Mg� 1 is invalid in this case, although it is valid
over a much smaller region, such as the leading or trailing edge. Accordingly,
the flow is not solenoidal and a ridge forms. In front of this ridge, the liquid is
quiescent.

The trailing edge of the ridge is very smooth, while a fingering instability
develops at the leading edge. The length scale is given by the circles around the
nozzles. The diameter of these circles is 130 µm. The viewing angle is 45◦, so
the length scale in the direction tangential to the flow, is

√
2 times the length

scale in the transverse direction. The distance between the fingers is between
λ = 100 µm and λ = 300 µm.

In this case, The values of the various parameters are

µ = 10−2 Nm−2

u0 = 10−3 ms−1

σ0 = 25 · 10−3 Nm−1

θ = 25 · 10−3

h0 = 10−6 m

Using equation 7.65, the order of magnitude of the distance between fingers of
λ ∼ 400 µm is predicted, while a value between λ = 100 µm and λ = 300 µm
was observed in the experiment, which is the same order of magnitude. The
experimental and theoretical results agree. This confirms the solenoidal theory.

7.5 Conclusion and discussion

Thin film Marangoni flow is solenoidal, so droplet spreading and translation
are completely decoupled. This can be derived from the governing equations.
The assumptions are that the surfactant is insoluble, that surface diffusion is
negligible, that fluctuations of the surfactant concentration are small with re-
spect to the absolute concentration, and that the capillary number is small with
respect to the aspect ratio of the system. This hypothesis was suggested by
an experimental observation and tested in a different experiment. In the latter
experiment, the solenoidal theory was confirmed.

If the layer thickness is constant or the surfactant concentration gradient
is parallel to the gradient of the layer thickness, the two coupled transport
equations reduce to Laplace’s equation on the surfactant concentration.

As a demonstration of how the developed theory simplifies analysis, the
evolution of the fingering instability at the leading edge of a translating ridge
was treated. The mechanism of the fingering instability is revealed by the
analysis. The fingers shield the rest of the front from the variation in surfactant
concentration, in the same way that Faraday’s cage shields the interior from
electric fields. The instability is also similar to a Saffman-Taylor instability in
porous media. This increases the surface tension gradient at the tips of the
fingers, while the surface tension gradient is decreased between the fingers. The
small wavelength cutoff is provided by Laplace pressure, as shown by Craster
and Matar [13]. The prediction that the disparity of the layer thickness before
and after the front is essential, is confirmed, and the cause of this necessity
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is revealed. The disparity between the layer thicknesses is what provides the
shielding capacity of the fingers.

For thin film Marangoni flow in general, the stiff transport equation for sur-
factant is reduced to an elliptic equation in two spatial dimensions. The time
scale of equilibration of the surfactant concentration is much smaller then the
convective time scale. This separation of time scales is called stiffness, and
poses a problem for numerical analysis. The time step must be smaller than the
smallest time scale for most integration methods. The large separation of time
scales implies that the number of time steps must be large. This problem can
sometimes be mitigated by using implicit integration schemes. This is the solu-
tion chosen by Warner, Craster, and Matar [11] [12] [13]. Implicit methods are
computationally costly and can be difficult to implement. In some cases, such
as the one treated, the stiffness can be turned into an advantage by considering
the limiting case where the smallest time scale vanishes. The corresponding evo-
lution equation is now replaced by a PDE of lower dimension where derivatives
with respect to time are eliminated. This approach is often taken in the analysis
of bulk flows, where the time scale of acoustic disturbances is very small with
respect to the convective and diffusive time scales. Because numerical integra-
tion of the general case would be limited by Courant’s condition on the velocity
of sound c∆t < ∆x, the limit of incompressible flow is usually considered. In
incompressible flow, the liquid velocity is usually the largest velocity. For low
Mach number flows, this velocity is much smaller than the velocity of sound
so that the upper limit on the time step is much less stringent. In the incom-
pressible approximation of bulk flows, the velocity is solenoidal. This simplifies
the governing equations to such an extent that vorticity free solenoidal flows
have been tractable for centuries. This led to the development of a plethora of
potential flow methods that can now, with the theory that is presented in this
paper, be applied to thin film Marangoni flow as well.
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Chapter 8

Conclusions

The dominant effects in nozzle failure are the compressibility of the air bubble,
the inertia of the ink in the nozzle, and the viscous friction in the nozzle. In
essence, the nozzle is a low-pass filter from velocity in the channel to velocity
in the nozzle. As the bubble grows the cutoff frequency decreases. When the
cutoff frequency of the nozzle becomes much smaller than the dominant part of
the spectrum of the channel velocity, the droplet formation ceases.

The bubble influences the channel acoustics and the velocity of the ink in
the nozzle through its volume oscillations. The influence of the bubble on the
pressure cannot be neglected. To calculate the volume oscillations of a bubble
in an inkjet printhead, the full two-way coupling between bubble volume oscil-
lations and the channel acoustics has to be taken into account. This shows that
for the bubble and channel sizes that were investigated, the two-way coupling
between channel acoustics and bubble volume oscillations is much more impor-
tant than an accurate modeling of the direct wall interaction. For the bubble
volume oscillations, the relevant effects are identified.

• The inertia and viscous friction in the nozzle flow.

• The inertia, viscous friction, gas pressure, and surface tension effects of the
radial flow field from the bubble. These effects constitute the Rayleigh-
Plesset equation.

• The channel acoustics that are bidirectionally coupled to the nozzle flow
and the bubble volume oscillations.

The list of relevant effects that was given above is exhaustive for the investigated
parameter range.

By deriving and interpreting a complete set of dimensionless groups for a
bubble in a pipe, we have developed a method to escertain which effects are
relevant and which effects can be neglected. The volume oscillations of a bubble
in a pipe are now understood.

The translation map of small bubbles contains a limit cycle in the nozzle,
some saddle points, and an attractor in the corner. During the part of the cycle
where the bubble approaches the meniscus, the bubble might be ejected if its
location at the start of the cycle is favorable. As the bubble radius increases,
the limit cycle disappears and the basin of attraction of the attractor in the
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corner expands to almost the entire nozzle and channel. This takes about 100
actuation cycles. After this has happened, the bubble can no longer be ejected
and it will end up in the corner, where it is kept firmly in place by secondary
Bjerknes force. Besides lubrication force and secondary Bjerknes force, no other
forces are present since both the velocity and the pressure gradient vanish in the
corner. In the corner, the bubble can grow due to rectified diffusion until the
bubble volume is a few hundred picoliter, which takes about one second for the
investigated printhead. The volume of the acoustic field then limits the growth
of the bubble.

Air entrainment is caused by dust particles. These dust particles are trans-
ported from wherever they struck the nozzle plate to the nozzle by ink flows on
the nozzle plate, as shown in previous research. In chapter 7, we have shown
experimentally that the two-dimensional divergence of the depth averaged ve-
locity of these flows vanishes. We also derived this analytically, including the
conditions under which this relation holds. A flow in a thin layer of liquid that
is driven by Marangoni stress due to concentration gradients of an insoluble sur-
factant is two-dimensionally solenoidal if the concentration fluctuation in space
and time is much smaller than the absolute magnitude of the concentration.
With this result, the flow was shown to obey two-dimensional potential flow if
the inital layer thickness is also constant in space. As a demonstration of how
this result simplifies the analysis of thin film Marangoni flow and to validate
the result, a fingering instability that has been observed on the nozzle plate was
calculated analytically. The predictions by this analysis were confirmed. This
supports the developed theory and it suggests that the conditions for vanish-
ing divergence are satisfied. The flow is driven by Marangoni stress due to an
insoluble surfactant.

One might object to these conclusions that the influence of surfactants on
the bubble evolution has been neglected, even though the flow of the same ink
on the nozzle plate is driven and governed by Marangoni stress, showing that
surfactants are important there. Surfactants can influence both the translation
through its effect on the drag, and the volume oscillations through its effect on
the Laplace pressure. The two limiting cases are a completely free surface where
Marangoni stress is negligible and a completely rigid surface where Marangoni
stress is dominant. The drag on a rigid sphere is larger, but still of the same
order of magnitude. The influence of surfactants might change the translation
quantitatively, but it is not expected to change the behavior qualitatively, so
the conclusions that were drawn are expected to hold true nevertheless. The
influence of surfactants on volume oscillations is expected to be small, since
Laplace pressure is much smaller than the pressure fluctuation in the investi-
gated parameter ranges. Another possible objection to these conclusions is that
the bubble is assumed to remain spherical, while in other investigations, the
bubble was observed to be nonspherical for similar pressure amplitudes, when
it undergoes a violent collapse near a wall. In the investigated printheads, vi-
olent collapses are present in a narrow range of bubble radii. Outside of this
range, the results are not affected by this phenomenon. The influence of these
shape changes during a violent collapse near a wall need not be studied in a
capillary tube. This is an open problem in the broader field of research of forces
on bubbles. When more knowledge about this problem becomes available, the
results for the translation of bubbles that undergo a violent collapse near the
walls should be reconsidered.
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In this research, entrained air bubbles in inkjet printheads were investigated,
both the events that lead to air bubble entrainment and the evolution of an air
bubble after entrainment. The causes of air entrainment were studied in depth
in previous work. In this research, the driving force of the flow on the nozzle
plate was identified and the effects that govern this flow were identified and
quantified. This leaves the mechanism of air entrainment as the most prominent
open problem of the events up to air entrainment. The evolution of the bubble
after entrainment was studied experimentally in previous investigations. In
those studies, the evolution was characterized as far as possible with the theory
that was available at that time, most of which which was only valid for a bubble
in an infinite volume of liquid. The available extensions to bubbles in confined
space were for bubbles close to an infinite flat wall and for the natural frequency
of oscillation of a bubble in a pipe that is short enough to neglect acoustics.
Neither of the previously investigated cases is a suitable model of a bubble in
an inkjet printhead. The theory on a bubble in a pipe was extended as far as
necessary to predict the nonlinear volume oscillations and translational motion
of the bubble.
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Summary

We have investigated mechanisms that lead to nozzle failure through the influ-
ence of an entrained air bubble. We investigated how (chapters 2, 3, and 4) and
under which circumstances a bubble causes nozzle failure (chapter 5), and the
conditions that give rise to these circumstances (chapters 6 and 7).

In chapter 2, we identified the dominant effects in nozzle failure. The domi-
nant effects are the compressibility of the air bubble, the inertia of the ink in the
nozzle, and the viscous friction in the nozzle. In essence, the nozzle is a second
order low-pass filter from velocity in the channel to velocity in the nozzle. As
the bubble grows, the cutoff frequency decreases. When the cutoff frequency of
the nozzle becomes much smaller than the dominant part of the spectrum of
the channel velocity, the droplet formation ceases.

The bubble influences the channel acoustics and the velocity of the ink in
the nozzle through its volume oscillations. Naively, one might attempt to model
these by calculating the pressure at the location of the bubble by a channel
acoustics calculation and use this pressure as an input to the Rayleigh-Plesset
equation. This would constitute a one-way coupling of the channel acoustics
to the bubble volume oscillations, neglecting the influence of the bubble on the
pressure. However, we have shown that the influence of the bubble on the pres-
sure is dominant when nozzle failure sets in. The influence of the bubble on the
pressure cannot be neglected. To calculate the volume oscillations of a bubble
in an inkjet printhead, the full two-way coupling between bubble volume os-
cillations and the channel acoustics has to be taken into account. A linearized
model, where this two-way coupling is taken into account, is described in chapter
3. The predictions by this model agree quantitatively with experimental obser-
vations. This is remarkable since the direct influence of the channel walls on
the bubble volume oscillations was neglected. Only the influence of the volume
oscillations on the pressure far away from the bubble was taken into account.
This shows that for the bubble and channel sizes that were investigated, the
two-way coupling between channel acoustics and bubble volume oscillations is
much more important than an accurate modeling of the direct wall interaction.
The quantitative agreement between measurements and the calculation results
indictates that all the relevant effects have been taken into account. For the
bubble volume oscillations, the relevant effects are identified.

• The inertia and viscous friction in the nozzle flow.

• The inertia, viscous friction, gas pressure, and surface tension effects of the
radial flow field from the bubble. These effects constitute the Rayleigh-
Plesset equation.
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• The channel acoustics that are bidirectionally coupled to the nozzle flow
and the bubble volume oscillations.

This model was tested rigorously in chapter 4. The model was extended to
predict the current through the piezo actuator. This current depends on all
of the parameters of the system, including the bubble volume. Usually, the
other relevant parameters are fixed, so the bubble volume is the only unknown
parameter. This parameter is changed until the calculated piezo current matches
the measured piezo current as closely as possible. The bubble volume in the
model for which this optimum occurs should be the volume of the bubble in
the actual printhead. This optimization procedure can be used as a method to
measure the bubble volume through its influence on the channel acoustics. The
accuracy, and even the possibility of this acoustic measurement method is very
sensitive to the accuracy of the underlying model. Attempting to use the model
in this way is therefore a rigorous test of the completeness of the model and the
validity of the underlying assumptions. The error was shown to be less than 10%
for bubble volumes over 20 pl. For small bubbles, nonlinear effects that cannot
be captured by the linear model are expected to be relevant. The accuracy of
this novel measurement method shows that the list of relevant effects that was
given above is exhaustive for the investigated parameter range.

In order to establish which effects are relevant given any set of parameters,
the order of magnitude of their influences can be estimated and compared. This
results in a set of dimensionless groups. In chapter 5, a complete set of such
dimensionless groups was derived for a bubble in a pipe, and the effects that
they compare were identified. An inkjet printhead consists of a large number
of pipes, the ink channels, that connect nozzles to the ink reservoir. Therefore,
these dimensionless groups for a bubble in a pipe show which effects can be
neglected in an inkjet printhead given any set of parameters. Since the bubble
volume and the actuation amplitude are most easily varied once the printhead
has been constructed, the parameter space that is spanned by these two param-
eters was investigated. The importance of two-way coupling and the relative
magnitude of the bubble volume oscillations, which indicates the importance of
nonlinearity, were predicted. A nonlinear model in which two-way coupling is
taken into account was developed to test these predictions. This model couples
the Rayleigh-Plesset equation for the bubble volume oscillations, the axisym-
metric Navier-Stokes equation for the nozzle flow and the low reduced frequency
approximation for the channel acoustics. The theoretical predictions were con-
firmed with the numerical model.

By deriving and interpreting this set of dimensionless groups, we have de-
veloped a method to escertain which effects are relevant and which effects can
be neglected. Using this method consists of filling in the parameter values and
evaluating the ratio. This is the simplest possible theoretical method to draw
conclusions about a system. The availability of such methods indicates the ma-
turity of a field of research. The volume oscillations of a bubble in a pipe are
now basically understood.

When a bubble is entrained, it is initially too small to significantly disturb
the droplet formation. If the bubble remains in the channel for a few hundred
actuations, it grows by rectified diffusion of dissolved air towards the bubble.
Eventually, it is large enough to disrupt the droplet formation. This disruption
of the droplet formation is called nozzle failure. Nozzle failure does not occur
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when the bubble is ejected from the nozzle before nozzle failure occurs. This
raises two questions. How does a bubble move through a printhead? How does
a bubble grow in a printhead? These questions are addressed in chapter 6. The
motion will influence the gas diffusion, and thus the growth. The ratio of gas
transport due to convection over gas transport due to diffusion is the Péclet
number, which is large in this case. Therefore, the influence of the translational
motion on the growth cannot be neglected. We have derived an expression for
the gas diffusion towards the bubble that is valid for a translating bubble that
undergoes volume oscillations. This leaves the bubble motion to be determined.
This bubble motion can be calculated by balancing the forces on the bubble,
since the mass of the bubble itself is negligible. The forces that were considered
are added mass, primary Bjerknes force, secondary Bjerknes force, viscous drag,
lift, history force, and lubrication force. Of these forces, history force and lift
were neglected. Added mass, primary Bjerknes force, and viscous drag can be
present in an infinite volume of liquid. Therefore, the expressions for an infinite
volume of liquid can be used as an approximation of these forces in an inkjet
printhead. However, secondary Bjerknes force and lubrication force are the
result of the interaction between the bubble and the walls. Lubrication force is
the near-field correction to the viscous drag, and it prevents the bubble from
moving through walls. Since this effect is negligible unless the bubble is very
close to the wall, the distance to the wall can be assumed to be much smaller
than the radius of curvature or the wall. We derived an expression for lubrication
force between a bubble and a flat wall. This approximation cannot be applied
to the derivation of an expression for secondary bjerknes force. This force was
calculated by a three-dimensional potential flow calculation. This method to
calculate the secondary Bjerknes force can be used for arbitrary geometries,
but does not require a full potential flow calculation at each timestep of the
simulation. The derived expressions were incorporated into the numerical model
of bubble volume oscillations, channel acoustics, and nozzle flow.

With the developed numerical model, the translation of a bubble was in-
vestigated. The translation map of very small bubbles contains a limit cycle
in the nozzle, some saddle points, and an attractor in the corner. During the
part of the cycle where the bubble approaches the meniscus, the bubble might
be ejected if its location is precisely right. As the bubble radius increases, the
limit cycle disappears and the basin of attraction of the attractor in the cor-
ner expands to almost the entire nozzle and channel. This takes about 100
actuation cycles. After this has happened, the bubble can no longer be ejected
and it will end up in the corner, where it is kept firmly in place by secondary
Bjerknes force. Besides lubrication force and secondary Bjerknes force, no other
forces are present since both the velocity and the pressure gradient vanish in
the corner. In the corner, the bubble can grow due to rectified diffusion until
the bubble volume is a few hundred picoliter. The volume of the acoustic field
then limits the growth of the bubble.

The mechanisms that cause air entrainment have been studied in previous
research. Air entrainment is caused by dust particles. These dust particles are
transported from wherever they struck the nozzle plate to the nozzle by ink
flows on the nozzle plate. These ink flows appear to obey plane potential flow.
The driving force could not be identified in these studies, but two hypotheses
were offered, air flow and Marangoni stress. In chapter 7, we have shown exper-
imentally that the two-dimensional divergence of the depth averaged velocity
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vanishes. We also derived this analytically, including the necessary conditions.
A flow in a thin layer of liquid that is driven by Marangoni stress due to con-
centration gradients of an insoluble surfactant is two-dimensionally solenoidal
if the concentration fluctuation in space and time is much smaller than the ab-
solute magnitude of the concentration. With this result, the flow was shown
to obey two-dimensional potential flow if the inital layer thickness is also con-
stant in space. As a demonstration of how this result simplifies the analysis of
thin film Marangoni flow, and to validate the result, a fingering instability that
has been observed on the nozzle plate was analyzed. The predictions by this
analysis were confirmed. This supports the developed theory and it suggests
that the conditions for vanishing divergence are satisfied. The flow is driven by
Marangoni stress due to an insoluble surfactant.

An extensive treatment of the evolution of an air bubble in an inkjet print-
head was presented. The events that result in an entrained air bubble have
been studied extensively in previous investigations, leaving three important open
questions: How does a dust particle lead to air entrainment? What is the driv-
ing force of the flows on the nozzle plate? What makes these flows on the nozzle
plate satisfy plane potential flow? The answers to the latter two questions given
in this thesis. The mechanism of air entrainment was not discovered. In further
investigations of nozzle failure, the mechanism of air entrainment is the most
important fundamental question. From a technological point of view, a detailed
study of how the nozzle shape influences bubble translation is an important
issue, as it enables the design of automatically recovering nozzles, or at least a
method of influencing the chance of recovery by bubble ejection. With respect
to bubble dynamics in a pipe or tube, we hope that the presented methods, in
particular the dimensionless groups, are used extensively so that the results are
thoroughly validated and their limitations are discovered.



Samenvatting

We hebben de mechanismes onderzocht die leiden tot nozzle uitval door de in-
vloed van een ingehapte luchtbel. He hebben onderzocht hoe (hoofdstukken 2,
3 en 4) en onder welke omstandigheden (hoofdstuk 5) een luchtbel tot uitval
van de nozzle leidt, en wanneer deze omstandigheden op kunnen treden (hoofd-
stukken 6 en 7).

In hoofdstuk 2 hebben we de dominante effecten gëıdentificeerd. Dit zijn de
compressibiliteit van de luchtbel, de massatragheid van de inkt in de nozzle en
de viskeuze wrijving in de nozzle. Een nozzle gedraagt zich als een tweede orde
laag-doorlaat filter van snleheid in het kanaal naar snelheid in de nozzle. De
afkap frequentie neemt af wanneer de bel groeit. Wanneer de afkapfrequentie
van de nozzle veel kleiner wordt dan het dominante gedeelte van het spectrum
van de snelheid in het kanaal, houdt de druppelvorming op.

De bel bëınvloedt de kanaalakoestiek en de snelheid van de inkt in de nozzle
door zijn volume oscillaties. Men zou in eerste instantie ertoe geneigd kun-
nen zijn, deze volume-oscillaties te berekenen door eerst de druk ter plaatse
van de luchtbel te berekenen met een kanaalakoestiek model, om daarna deze
druk te gebruiken als bronterm in de Rayleigh-Plesset vergelijking. Zo zou een
model ontstaan met koppeling in één richting, van de kanaalakoestiek naar de
belvolume oscillaties, waarin de invloed van de luchtbel op de druk wordt ver-
waarloosd. We hebben echter in dit onderzoek aangetoond dat de invloed van
de luchtbel op de druk dominant is wanneer de nozzle uitvalt. De invloed van
de luchtbel op de druk kan dus zeker niet verwaarloosd worden. Om de vol-
umeoscillaties van een luchtbel in een inkjet printkop te berekenen, moet de
volledige koppeling in beide richtingen worden meegenomen. In hoofdstuk 3
beschrijven we een gelineariseerd model waarin deze tweewegkoppeling volledig
is meegenomen. De voorspellingen door dit model komen kwantitatief overeen
met experimentele waarnemingen. Dit is des te opmerkelijker aangezien de di-
recte invloed van de wanden van het kanaal op de volumeoscillaties verwaarloosd
is. Alleen de invloed van de wand op de druk op grote afstand van de bel is
meegenomen. Dit toont aan dat voor de onderzochte bel- en kanaalgroottes de
tweewegkoppeling tussen kanaalakoestiek en belvolumeoscillaties veel belangri-
jker is dan een nauwkeurige modellering van de directe interactie tussen de bel
en de wand. De kwantitatieve overeenkomst toont aan dat alle relevante ef-
fecten in het model vertegenwoordigd zijn. Daarmee zijn alle relevante effecten
gëıdentificeerd.

• de massatraagheid en viskeuze wrijving in de nozzlestroming

• de massatraagheid, viskeuze wrijving, gasdruk en oppervlaktespanningsef-
fecten van het radiële snelheidsveld van de luchtbel. Dit zijn de effecten
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die samen de Rayleigh-Plessetvergelijking dicteren.

• de kanaalakoestiek die in beide richtingen gekoppeld is aan de nozzlestro-
ming en de belvolumeoscillaties

In hoofdstuk 4 is dit model grondig getest. Ook is het model daar uitgebreidt
zodat het ook de stroom door de actuator kan voorspellen. Deze stroom hangt
van alle parameters van het systeem af, waaronder het belvolume. Normaal
gesproken liggen alle andere parameters vast zodat het belvolume de enige on-
bekende parameter is. Deze parameter wordt gevarieerd totdat de berekende
stroom door de piezoactuator zo goed mogelijk overeenkomt met de gemeten
stroom. Het belvolume in het model waarbij dit optimum optreedt zou gelijk
moeten zijn aan het werkelijke belvolume. Deze optimalisatieprocedure kan ge-
bruikt worden om het belvolume te meten aan de hand van de invloed op de
kanaalakoestiek. Of dit mogelijk is en hoe nauwkeurig deze methode is, is erg
gevoelig voor de nauwkeurigheid van het onderliggende model. Dit gebruik van
het model is daardoor een grondige test van hoe compleet het model is en van
de geldigheid van de onderliggende aannames. De fout bleek minder dan 10% te
zijn voor belvolumes boven de 20 picoliter. Voor kleine bellen zijn de nietlineaire
effecten die in dit lineaire model niet aanwezig zijn, waarschijnlijk wel relevant.
De nauwkeurigheid van deze nieuwe methode toont aan dat de gegeven lijst met
relevante effecten volledig is in de onderzochte parameterruimte.

Om te achterhalen welke effecten relevant zijn voor een gegeven verzameling
parameters, kunnen de groottes van de invloeden van deze parameters worden
afgeschat en vergeleken. Dit levert een verzameling dimensieloze grootheden
op. In hoofdstuk 5 wordt een complete verzameling dimensieloze grootheden
afgeleidt voor een bel in een pijp, en worden de effecten die ermee worden
vergeleken afgeleidt. Een inkjet printkop bestaat uit een groot aantal pijpjes,
de inktkanalen, die de nozzles met het inktreservoir verbinden. Daardoor kun-
nen deze dimensieloze groepen worden gebruikt om te achterhalen welke effecten
verwaarloosd kunnen worden voor iedere willekeurige verzameling parameters.
Omdat het belvolume en de actuatieamplitude het makkelijkst kunnen wor-
den gevarieerd wanneer de printkop gebouwd is, hebben we de parameterruimte
onderzocht die wordt opgespannen door deze twee parameters. De relevantie
is zo op theoretische gronden voorspeld van de tweewegkoppeling, en van de
relatieve grootte van de belvolumeoscillaties die aangeven hoe belangrijk niet-
lineaire effecten zijn. Een nietlineair model waarin rekening is gehouden met de
tweewegkoppeling, is ontwikkeld zodat deze voorspellingen getest konden wor-
den. In dit model zijn de Rayleigh-Plesset vergelijking voor de belvolumeoscil-
laties, een axisymmetrische Navier-Stokes solver voor de stroming in de nozzle
en de low reduced frequency benadering voor de kanaalakoestiek gekoppeld. De
voorspelling op theoretische gronden zijn bevestigd door de resultaten van het
numerieke model.

Door deze verzameling dimensieloze grootheden af te leiden hebben we een
methode ontwikkeld waarmee kan worden vastgesteld welke effecten relevant zijn
en welke effecten verwaarloosd kunnen worden. Het gebruik van deze methode
bestaat uit het invullen van de parameterwaardes en het evalueren van de breuk.
Dit is de eenvoudigste theoretische methode waarmee conclusies kunnen worden
gestrokken over een systeem. Het feit dat dergelijke methodes beschikbaar zijn
geeft de volwassenheid van dit onderzoeksveld aan. In grote lijnen begrijpen we
nu volumeoscillaties van een bel in een pijp.
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En bel die net is ingehapt is te klein om de druppelvorming significant te ve-
storen. Indien de bel gedurende een paar honderd actuaties in het kanaal blijft,
groeit deze door rectified diffusion van in de inkt opgeloste lucht naar de bel.
Uiteindelijk zal de bel groot genoeg zijn om de druppelvorming te beeindigen.
Het verhinderen van de druppelvorming door een luchtbel heet nozzle uitval.
Een nozzle zal niet uitvallen wannneer de bel met een druppel mee uit de nozzle
wordt gespoten voordat uitval plaats vindt. Dit roept twee vragen op. Hoe
beweegt een bel door een printkop en hoe groeit een bel in een printkop? Deze
vragen worden behandeld in hoofdstuk 6. De beweging bëınvloedt gasdiffusie,
en dus de groei van de bel. De verhouding van gastransport door convectie
gedeeld door gastransport door diffusie is het Péclet getal, en die is groot in dit
geval. Daarom is de invloed van de translatie op de groei verwaarloosd. We
hebben een uitdrukking van de gasdiffusie naar de bel toe afgeleid, die geldig
is voor een translerende luchtbel die volumeoscillaties ondergaat. Rest nog het
bepalen van de belbeweging. Deze kan worden berekend met een krachtenbal-
ans. De massa van de bel in verwaarloosbaar, dus de krachten op de luchtbel
moeten in evenwicht zijn met elkaar. Added mass, primary Bjerknes force, sec-
ondary Bjerknes force, viskeuze wrijving, lift, Boussinesque-Basset history force
en lubrication force zijn overwogen. History force en lift zijn na deze overweging
verwaarloosd. Added mass, primary Bjerknes force en viskeuze wrijving kun-
nen ook aanwezig zijn in een onbegrensd volume vloeistof. Daardoor kunnen
de uitdrukkingen voor deze krachten voor een bel in een onbegrensd volume
vloeistof worden gebruikt als benadering voor een bel in een inkjet printkop.
Secondary Bjerknes force en lubrication force zijn daarentegen het gevolg van
interactie tussen de bel en de wand. Lubrication force is de correctie op de
visckeuze wrijving door het nabije veld, en deze verhindert dat de bubble door
de muur heen gaat. Doordat dit effect verwaarloosbaar klein is tenzij de bel
zich zeer dicht bij de wand bevindt, kan worden aangenomen dat de afstand
tot de wand veel kleiner is dan dan de kromtestraal van de wand. We hebben
een uitdrukking afgeleid voor de lubrication force tussen een bel en een vlakke
wand. Dezelfde benadering kan niet worden toegepast om de secondary Bjerknes
force te berekenen. Die kracht is berekend met een driedimensionale potenti-
aalstromingsberekening. De gebruikte methode kan voor arbitraire geometriën
worden toegepast, maar vereist toch geen volledige berekening van de potenti-
aalstroming tijdens iedere tijdstap van de simulatie. De verkregen uitdrukkingen
zijn in het numerieke model gëımplementeerd, waarin de belvolumeoscillaties,
kanaalakoestiek en nozzlestroming al werden berekend.

Met het ontwikkelde model is de verplaatsing van de bel onderzocht. De
verplaatsing van zeer kleine bellen bevat een limit cycle in de nozzle, een aantal
zadelpunten, en een aantrekkend punt in de hoek. Gedurende het deel van de
limit cycle waarin de bel de meniscus benaderd kan de bel naar buiten worden
gespoten indien de locatie precies gunstig is. Naarmate de belstraal toeneemt,
verdwijnt de limit cycle en groeit het gebied waarin de bel naar de hoek toegaat
totdat die bijna de hele nozzle en het kanaal beslaat. Dit duurt ongeveer honderd
actuaties. Daarna kan de bel niet meer naar buiten worden gespoten en komt in
de hoek terecht, waar die zal blijven ten gevolge van secondary Bjerknes force.
Behalve lubrication force en secondary bjerknes force werken er geen andere
krachten op de bel wanneer die zich in de hoek bevindt doordat de snelheid en
drukgradient daar allebei klein zijn. In de hoek kan de bel vervolgens groeien
door rectified diffusion totdat het belvolume een paar honderd picoliter is. De
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volume amplitude van het akoestische veld is dan de beperkende factor in de
belgroei.

De mechanismes van het inhappen van lucht zijn in eerder onderzoek uitge-
zocht. Lucht wordt ingehapt ten gevolge van de invloed van stofdeeltjes. Deze
stofdeeltjes worden naar de nozzle verplaatst vanaf de plek waar ze de nozzle-
plaat raken door inktstroming op de nozzleplaat. Deze inktstromingen lijken
zich te gedragen als potentiaalstroming in een vlak. De aandrijvende kracht
kon niet met zekerheid worden gëıdentificeerd in deze onderzoeken, maar twee
hypotheses werden geponeerd, luchtstroming en Marangoni stress. In hoofdstuk
7 hebben we experimenteel aangetoont dat de tweedimensionale divergentie van
de dieptegemiddelde snelheid in deze laag nul is. We hebben dit ook analytisch
afgeleid, samen met de daarvoor noodzakelijke voorwaarden. Stroming in een
dunne laag vloeistof die wordt aangedreven door Marangoni stress ten gevolge
van de gradient van de concentratie van een niet oplosbare oppervlakteactieve
stof, is tweedimensionaal divergentievrij indien de concentratiefluctuatie in tijd
en ruimte veel kleiner is dan de absolute waarde van de concentratie. Met dit re-
sultaat konden we aantonen dat de vloeistof stroomt als een potentiaalstroming
wanneer tevens de initiële laagdikte constant is. Om te laten zien hoe dit resul-
taat de analyse van Marangoni flow in een dunne laag vereenvoudigd, hebben we
een vingerinstabiliteit die op de nozzleplaat is waargenomen geanalyseerd. De
voorspellingen van deze analyse werden door de waarnemingen bevestigd. Dit
bevestigt de ontwikkelde theorie en het suggereert dat aan de voorwaarden voor
divergentievrije stroming is voldaan in dit geval. We concluderen daarom dat
deze stroming wordt aangedreven door een niet oplosbare oppervlakteactieve
stof.

In dit proefschrift is een uitgebreide behandeling van het gedrag van een
luchtbel in een inkjet printkop gegeven. De gebeurtenissen die leiden tot een
ingehapte luchtbel zijn uitgebreid bestudeerd in eerder onderzoek. Daarbij zijn
drie vragen onbeantwoord gebleven: Hoe leidt een stofdeeltje tot het inhappen
van lucht? Wat drijft de stroming op een nozzleplaat aan? Waardoor gedragen
deze stromingen zich als een potentiaalstroming? De laatste twee vragen zijn
in dit proefschrift beantwoord. Hoe een stofdeeltje leidt tot het inhappen van
lucht is niet ontdekt. In verder onderzoek van nozzle uitval is dit mechanisme
het belangrijkste fundamentele punt. Van een technologisch perspectief is een
gedetailleerd onderzoek van het de nozzlevorm verplaatsing van een luchtbel
bëınvloedt een belangrijk open vraagstuk omdat deze kennis het ontwerpen van
automatisch herstellende nozzles mogelijk zou kunnen maken, of anders op zijn
minst een handvat geeft voor het bëınvloeden van de herstelkans door het naar
buiten spuiten van de luchtbel. Met betrekking tot het gedrag van een bel in een
pijp hopen we dat de aangereikte methodes, in het bijzonder de dimensieloze
groepen, op brede schaal worden toegepast zodat deze resultaten grondig worden
gevalideerd en hun beperkingen aan het lciht komen.

An extensive treatment of the evolution of an air bubble in an inkjet print-
head was presented. The events that result in an entrained air bubble have
been studied extensively in previous investigations, leaving three important open
questions: How does a dust particle lead to air entrainment? What is the driv-
ing force of the flows on the nozzle plate? What makes these flows on the nozzle
plate satisfy plane potential flow? The answers to the latter two questions given
in this thesis. The mechanism of air entrainment was not discovered. In further
investigations of nozzle failure, the mechanism of air entrainment is the most
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important fundamental question. From a technological point of view, a detailed
study of how the nozzle shape influences bubble translation is an important
issue, as it enables the design of automatically recovering nozzles, or at least a
method of influencing the chance of recovery by bubble ejection. With respect
to bubble dynamics in a pipe or tube, we hope that the presented methods, in
particular the dimensionless groups, are used extensively so that the results are
thoroughly validated and their limitations are discovered.
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